<div id="shader"></div>
<script id="vertex" type="x-shader/x-vertex">
varying vec2 vUv;
void main() { gl_Position = vec4(position, 1.0);
vUv = uv;
}
</script>
<script id="fragment" type="x-shader/x-fragment">
precision highp float;
uniform vec2 u_resolution;
uniform float u_time;
varying vec2 vUv;
const float PI = 3.1415926535897932384626433832795;
const float TAU = PI * 2.;
const float HALF_PI = PI * .5;
float wiggly(float cx, float cy, float amplitude, float frequency, float spread){
float w = sin(cx * amplitude * frequency * PI) * cos(cy * amplitude * frequency * PI) * spread;
return w;
}
void coswarp(inout vec3 trip, float warpsScale ){
trip.xyz += warpsScale * .1 * cos(3. * trip.yzx + (u_time * .25));
trip.xyz += warpsScale * .05 * cos(11. * trip.yzx + (u_time * .25));
trip.xyz += warpsScale * .025 * cos(17. * trip.yzx + (u_time * .25));
}
void uvRipple(inout vec2 uv, float intensity){
vec2 p = uv -.5;
float cLength=length(p);
uv= uv +(p/cLength)*cos(cLength*15.0-u_time*.5)*intensity;
}
float smoothMod(float x, float y, float e){
float top = cos(PI * (x/y)) * sin(PI * (x/y));
float bot = pow(sin(PI * (x/y)),2.);
float at = atan(top/bot);
return y * (1./2.) - (1./PI) * at ;
}
vec2 modPolar(vec2 p, float repetitions) {
float angle = 2.*3.14/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
//float c = floor(a/angle);
a = smoothMod(a,angle,033323231231561.9) - angle/2.;
//a = mix(a,)
vec2 p2 = vec2(cos(a), sin(a))*r;
p2 += wiggly(p2.x + u_time * .05, p2.y + u_time * .05, 2., 4., 0.05);
return p2;
}
float stroke(float x, float s, float w){
float d = step(s, x+ w * .5) - step(s, x - w * .5);
return clamp(d, 0., 1.);
}
// Classic Perlin 2D Noise
// by Stefan Gustavson
//
vec4 permute(vec4 x)
{
return mod(((x*34.0)+1.0)*x, 289.0);
}
vec2 fade(vec2 t) {return t*t*t*(t*(t*6.0-15.0)+10.0);}
float cnoise(vec2 P){
vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, 289.0); // To avoid truncation effects in permutation
vec4 ix = Pi.xzxz;
vec4 iy = Pi.yyww;
vec4 fx = Pf.xzxz;
vec4 fy = Pf.yyww;
vec4 i = permute(permute(ix) + iy);
vec4 gx = 2.0 * fract(i * 0.0243902439) - 1.0; // 1/41 = 0.024...
vec4 gy = abs(gx) - 0.5;
vec4 tx = floor(gx + 0.5);
gx = gx - tx;
vec2 g00 = vec2(gx.x,gy.x);
vec2 g10 = vec2(gx.y,gy.y);
vec2 g01 = vec2(gx.z,gy.z);
vec2 g11 = vec2(gx.w,gy.w);
vec4 norm = 1.79284291400159 - 0.85373472095314 *
vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
float n00 = dot(g00, vec2(fx.x, fy.x));
float n10 = dot(g10, vec2(fx.y, fy.y));
float n01 = dot(g01, vec2(fx.z, fy.z));
float n11 = dot(g11, vec2(fx.w, fy.w));
vec2 fade_xy = fade(Pf.xy);
vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return 2.3 * n_xy;
}
vec2 rotate2D (vec2 _st, float _angle) {
_st -= 0.5;
_st = mat2(cos(_angle),-sin(_angle),
sin(_angle),cos(_angle)) * _st;
_st += 0.5;
return _st;
}
vec2 rotateTilePattern(vec2 _st){
float t = (u_time * .25) ;
// Scale the coordinate system by 2x2
_st *= 2.0;
// Give each cell an index number
// according to its position
float index = 0.0;
index += step(1., mod(_st.x,2.0));
index += step(1., mod(_st.y,2.0))*2.0;
// |
// 2 | 3
// |
//--------------
// |
// 0 | 1
// |
// Make each cell between 0.0 - 1.0
_st = fract(_st);
// Rotate each cell according to the index
if(index == 0.0){
// Rotate cell 1 by 90 degrees
_st = rotate2D(_st,PI*0.5 +(t *.8));
}
if(index == 1.0){
// Rotate cell 1 by 90 degrees
_st = rotate2D(_st,PI*0.5 +t);
} else if(index == 2.0){
// Rotate cell 2 by -90 degrees
_st = rotate2D(_st,PI*-0.5 -t);
} else if(index == 3.0){
// Rotate cell 3 by 180 degrees
_st = rotate2D(_st,PI - (t * .8));
}
return _st;
}
vec2 tile(vec2 st, float _zoom){
float vTime = u_time;
st *= _zoom;
return fract(st);
}
vec2 rotateUV(vec2 uv, vec2 pivot, float rotation) {
mat2 rotation_matrix=mat2( vec2(sin(rotation),-cos(rotation)),
vec2(cos(rotation),sin(rotation))
);
uv -= pivot;
uv= uv*rotation_matrix;
uv += pivot;
return uv;
}
void coswarp2(inout vec2 trip, float warpsScale ){
float vTime = u_time;
trip.xy += warpsScale * .1 * cos(3. * trip.yx + (vTime * .25));
trip.xy += warpsScale * .05 * cos(11. * trip.yx + (vTime * .25));
trip.xy += warpsScale * .025 * cos(17. * trip.yx + (vTime * .25));
}
float roundedBoxSDF(vec2 CenterPosition, vec2 Size, float Radius) {
return length(max(abs(CenterPosition)-Size+Radius,0.0))-Radius;
}
float shape( in vec2 p, float sides ,float size)
{
float d = 0.0;
vec2 st = p *2.-1.;
// Number of sides of your shape
float N = sides ;
// Angle and radius from the current pixel
float a = atan(st.x,st.y)+PI ;
float r = (2.* PI)/(N) ;
// Shaping function that modulate the distance
d = cos(floor(.5+a/r)*r-a)*length(st);
return 1.0-smoothstep(size,size +.1,d);
}
void main() {
vec2 uv = (gl_FragCoord.xy - u_resolution * .5) / u_resolution.yy + 0.5;
float vTime = u_time * .5 ;
float t = (u_time * .25) + length(uv -.5) ;
vec2 uv2 = uv;
vec2 uv4= uv;
vec2 uv3 = rotateTilePattern(uv );
uvRipple(uv2, .5);
uv = rotateTilePattern(uv );
uv = rotateTilePattern(uv );
uv = rotateTilePattern(uv );
vec3 color = vec3(1.);
vec3 warp = vec3(uv.x, uv.y, 1.);
coswarp(warp, 3.);
coswarp(warp, 3.);
vec3 sky = vec3(uv.x, 0., 1.);
sky = mix(sky, color, warp.r * .5);
vec3 sand = vec3(1. * uv2.x, .3, uv2.y);
vec3 cactus = vec3(uv.x, 1., uv.y);
color = mix(sky, sand, step(uv.y, .48));
color = mix(color, 1.-color, step(roundedBoxSDF(uv-.5, vec2(sin(t), .3), .04), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .4), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .3), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .2), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .1), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .05), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .025), .01));
color = mix(color, 1.-color, step(shape(uv, 3., .0125), .01));
color = vec3(mix(step(color.r,.5), step(color.g,.5), step(sin(t), .5)));
color = mix(color, 1.-color, step(uv3.x + uv3.y, .4));
color = mix(warp, color, step(shape(uv4, 3., .4), .01));
color = mix(color, 1.-color, step(shape(uv4, 3., .3), .01));
color = mix(color, 1.-color, step(shape(uv4, 3., .2), .01));
color = mix(color, 1.-color, step(shape(uv4, 3., .1), .01));
gl_FragColor = vec4(vec3(color.r, color.g, color.b), 1.0);
}
</script>
*{ margin: 0px;}
let camera, scene, renderer, clock;
let uniforms;
function init() {
const container = document.getElementById("shader");
clock = new THREE.Clock();
camera = new THREE.Camera();
camera.position.z = 1;
scene = new THREE.Scene();
const geometry = new THREE.PlaneBufferGeometry(2, 2);
uniforms = {
u_time: { type: "f", value: 1.0 },
u_resolution: { type: "v2", value: new THREE.Vector2() },
};
const material = new THREE.ShaderMaterial({
uniforms,
vertexShader: document.getElementById("vertex").textContent,
fragmentShader: document.getElementById("fragment").textContent
});
const mesh = new THREE.Mesh(geometry, material);
scene.add(mesh);
renderer = new THREE.WebGLRenderer();
renderer.setPixelRatio(window.devicePixelRatio);
container.appendChild(renderer.domElement);
onWindowResize();
window.addEventListener("resize", onWindowResize);
}
function onWindowResize() {
renderer.setSize(window.innerWidth, window.innerHeight);
uniforms.u_resolution.value.x = renderer.domElement.width;
uniforms.u_resolution.value.y = renderer.domElement.height;
}
function render() {
uniforms.u_time.value = clock.getElapsedTime();
renderer.render(scene, camera);
}
function animate() {
render();
requestAnimationFrame(animate);
}
init();
animate();
This Pen doesn't use any external CSS resources.