Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                

<div id="shader"></div>
<script id="vertex" type="x-shader/x-vertex">
  varying vec2 vUv;
	void main() { gl_Position = vec4(position, 1.0);
               vUv = uv;
              }
</script>

<script id="fragment" type="x-shader/x-fragment">
precision highp float;

uniform vec2 u_resolution;
uniform float u_time;
  varying vec2 vUv;
 
const float PI = 3.1415926535897932384626433832795;
const float TAU = PI * 2.;
const float HALF_PI = PI * .5;
  
float wiggly(float cx, float cy, float amplitude, float frequency, float spread){

  float w = sin(cx * amplitude * frequency * PI) * cos(cy * amplitude * frequency * PI) * spread;

  return w;
}


void coswarp(inout vec3 trip, float warpsScale ){

  trip.xyz += warpsScale * .1 * cos(3. * trip.yzx + (u_time * .25));
  trip.xyz += warpsScale * .05 * cos(11. * trip.yzx + (u_time * .25));
  trip.xyz += warpsScale * .025 * cos(17. * trip.yzx + (u_time * .25));
  
}


void uvRipple(inout vec2 uv, float intensity){

	vec2 p = uv -.5;


    float cLength=length(p);

     uv= uv +(p/cLength)*cos(cLength*15.0-u_time*.5)*intensity;

} 

float smoothMod(float x, float y, float e){
    float top = cos(PI * (x/y)) * sin(PI * (x/y));
    float bot = pow(sin(PI * (x/y)),2.);
    float at = atan(top/bot);
    return y * (1./2.) - (1./PI) * at ;
}

 
 vec2 modPolar(vec2 p, float repetitions) {
    float angle = 2.*3.14/repetitions;
    float a = atan(p.y, p.x) + angle/2.;
    float r = length(p);
    //float c = floor(a/angle);
    a = smoothMod(a,angle,033323231231561.9) - angle/2.;
    //a = mix(a,)
    vec2 p2 = vec2(cos(a), sin(a))*r;
   
   p2 += wiggly(p2.x + u_time * .05, p2.y + u_time * .05, 2., 4., 0.05);
   
  

    return p2;
}

  float stroke(float x, float s, float w){
  float d = step(s, x+ w * .5) - step(s, x - w * .5);
  return clamp(d, 0., 1.);
}
  
 //	Classic Perlin 2D Noise
//	by Stefan Gustavson
//
vec4 permute(vec4 x)
{
    return mod(((x*34.0)+1.0)*x, 289.0);
}


vec2 fade(vec2 t) {return t*t*t*(t*(t*6.0-15.0)+10.0);}

float cnoise(vec2 P){
  vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
  vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
  Pi = mod(Pi, 289.0); // To avoid truncation effects in permutation
  vec4 ix = Pi.xzxz;
  vec4 iy = Pi.yyww;
  vec4 fx = Pf.xzxz;
  vec4 fy = Pf.yyww;
  vec4 i = permute(permute(ix) + iy);
  vec4 gx = 2.0 * fract(i * 0.0243902439) - 1.0; // 1/41 = 0.024...
  vec4 gy = abs(gx) - 0.5;
  vec4 tx = floor(gx + 0.5);
  gx = gx - tx;
  vec2 g00 = vec2(gx.x,gy.x);
  vec2 g10 = vec2(gx.y,gy.y);
  vec2 g01 = vec2(gx.z,gy.z);
  vec2 g11 = vec2(gx.w,gy.w);
  vec4 norm = 1.79284291400159 - 0.85373472095314 *
    vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11));
  g00 *= norm.x;
  g01 *= norm.y;
  g10 *= norm.z;
  g11 *= norm.w;
  float n00 = dot(g00, vec2(fx.x, fy.x));
  float n10 = dot(g10, vec2(fx.y, fy.y));
  float n01 = dot(g01, vec2(fx.z, fy.z));
  float n11 = dot(g11, vec2(fx.w, fy.w));
  vec2 fade_xy = fade(Pf.xy);
  vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
  float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
  return 2.3 * n_xy;
}
  
vec2 rotate2D (vec2 _st, float _angle) {
    _st -= 0.5;
    _st =  mat2(cos(_angle),-sin(_angle),
                sin(_angle),cos(_angle)) * _st;
    _st += 0.5;
    return _st;
}



vec2 rotateTilePattern(vec2 _st){

  float t = (u_time * .25)  ;
  
    //  Scale the coordinate system by 2x2
    _st *= 2.0;

    //  Give each cell an index number
    //  according to its position
    float index = 0.0;
    index += step(1., mod(_st.x,2.0));
    index += step(1., mod(_st.y,2.0))*2.0;

    //      |
    //  2   |   3
    //      |
    //--------------
    //      |
    //  0   |   1
    //      |

    // Make each cell between 0.0 - 1.0
    _st = fract(_st);

    // Rotate each cell according to the index
  
   if(index == 0.0){
        //  Rotate cell 1 by 90 degrees
        _st = rotate2D(_st,PI*0.5 +(t *.8));
    }
  
    if(index == 1.0){
        //  Rotate cell 1 by 90 degrees
        _st = rotate2D(_st,PI*0.5 +t);
    } else if(index == 2.0){
        //  Rotate cell 2 by -90 degrees
        _st = rotate2D(_st,PI*-0.5 -t);
    } else if(index == 3.0){
        //  Rotate cell 3 by 180 degrees
        _st = rotate2D(_st,PI - (t * .8));
    }

    return _st;
}

  vec2 tile(vec2 st, float _zoom){
    float vTime = u_time;
    st *= _zoom;
  
    return fract(st);
}

  vec2 rotateUV(vec2 uv, vec2 pivot, float rotation) {
  mat2 rotation_matrix=mat2(  vec2(sin(rotation),-cos(rotation)),
                              vec2(cos(rotation),sin(rotation))
                              );
  uv -= pivot;
  uv= uv*rotation_matrix;
  uv += pivot;
  return uv;
}
  
void coswarp2(inout vec2 trip, float warpsScale ){

  float vTime = u_time;
  trip.xy += warpsScale * .1 * cos(3. * trip.yx + (vTime * .25));
  trip.xy += warpsScale * .05 * cos(11. * trip.yx + (vTime * .25));
  trip.xy += warpsScale * .025 * cos(17. * trip.yx + (vTime * .25));
 
}
  
float roundedBoxSDF(vec2 CenterPosition, vec2 Size, float Radius) {
    return length(max(abs(CenterPosition)-Size+Radius,0.0))-Radius;
}

float shape( in vec2 p, float sides ,float size)
{
  
   float d = 0.0;
  vec2 st = p *2.-1.;

  // Number of sides of your shape
  float N = sides ;

  // Angle and radius from the current pixel
  float a = atan(st.x,st.y)+PI ;
  float r = (2.* PI)/(N) ;

  // Shaping function that modulate the distance
  d = cos(floor(.5+a/r)*r-a)*length(st);
  

  return  1.0-smoothstep(size,size +.1,d);
}

  
void main() {
	vec2 uv = (gl_FragCoord.xy - u_resolution * .5) / u_resolution.yy + 0.5;
  
  float vTime = u_time * .5 ;
  float t = (u_time * .25) + length(uv -.5) ;
  
  vec2 uv2 = uv;
   vec2 uv4= uv;
  vec2 uv3 = rotateTilePattern(uv );
  uvRipple(uv2, .5);

  
  uv = rotateTilePattern(uv );
  
  uv = rotateTilePattern(uv );
  uv = rotateTilePattern(uv );
  
	
	vec3 color = vec3(1.);
  
  vec3 warp = vec3(uv.x, uv.y, 1.);
  
  coswarp(warp, 3.);
  coswarp(warp, 3.);

  
  
  
  vec3 sky = vec3(uv.x, 0., 1.);
  
  sky = mix(sky, color, warp.r * .5);
  vec3 sand = vec3(1. * uv2.x, .3, uv2.y);
  
  
  vec3 cactus = vec3(uv.x, 1., uv.y);
  

  
  
  color = mix(sky, sand, step(uv.y, .48));
  

  color = mix(color, 1.-color, step(roundedBoxSDF(uv-.5, vec2(sin(t), .3), .04), .01));
  
  
    color = mix(color, 1.-color, step(shape(uv, 3., .4), .01));
  
  
  
  color = mix(color, 1.-color, step(shape(uv, 3., .3), .01));
  
  
    color = mix(color, 1.-color, step(shape(uv, 3., .2), .01));
  
      color = mix(color, 1.-color, step(shape(uv, 3., .1), .01));
  
      color = mix(color, 1.-color, step(shape(uv, 3., .05), .01));
  
      color = mix(color, 1.-color, step(shape(uv, 3., .025), .01));
  
      color = mix(color, 1.-color, step(shape(uv, 3., .0125), .01));
  
  color = vec3(mix(step(color.r,.5), step(color.g,.5), step(sin(t), .5)));

  
  color = mix(color, 1.-color, step(uv3.x + uv3.y, .4));
  
  
  
      color = mix(warp, color, step(shape(uv4, 3., .4), .01));
  
  
  
  color = mix(color, 1.-color, step(shape(uv4, 3., .3), .01));
  
  
    color = mix(color, 1.-color, step(shape(uv4, 3., .2), .01));
  
      color = mix(color, 1.-color, step(shape(uv4, 3., .1), .01));
	
    gl_FragColor = vec4(vec3(color.r, color.g, color.b), 1.0);
}
</script>
              
            
!

CSS

              
                *{ margin: 0px;}
              
            
!

JS

              
                
let camera, scene, renderer, clock;
let uniforms;

function init() {
	const container = document.getElementById("shader");

	clock = new THREE.Clock();
	camera = new THREE.Camera();
	camera.position.z = 1;

	scene = new THREE.Scene();

	const geometry = new THREE.PlaneBufferGeometry(2, 2);

	uniforms = {
		u_time: { type: "f", value: 1.0 },
		u_resolution: { type: "v2", value: new THREE.Vector2() },
	};

	const material = new THREE.ShaderMaterial({
		uniforms,
		vertexShader: document.getElementById("vertex").textContent,
		fragmentShader: document.getElementById("fragment").textContent
	});

	const mesh = new THREE.Mesh(geometry, material);
	scene.add(mesh);

	renderer = new THREE.WebGLRenderer();
	renderer.setPixelRatio(window.devicePixelRatio);

	container.appendChild(renderer.domElement);

	onWindowResize();
	window.addEventListener("resize", onWindowResize);
}

function onWindowResize() {
	renderer.setSize(window.innerWidth, window.innerHeight);
	uniforms.u_resolution.value.x = renderer.domElement.width;
	uniforms.u_resolution.value.y = renderer.domElement.height;
}

function render() {
	uniforms.u_time.value = clock.getElapsedTime();
	renderer.render(scene, camera);
}

function animate() {
	render();
	requestAnimationFrame(animate);
}

init();
animate();
              
            
!
999px

Console