HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="container"></div>
<script type="x-shader/x-vertex" id="vertexShader">
// delay and duration are used to calculate animation progress (0-1) for each vertex
attribute vec2 aAnimation;
// movement delta
attribute vec3 aTranslation;
// first control point for cubic bezier path
attribute vec3 aControlPoint0;
// second control point for cubic bezier path
attribute vec3 aControlPoint1;
// arbitrary normalized axis (x, y, z) and rotation (w) for quaternian rotation
attribute vec4 aAxisAngle;
// front vertex color
attribute vec3 aFrontColor;
// back vertex color
attribute vec3 aBackColor;
// time passed from the cpu
uniform float uTime;
varying vec3 vFrontColor;
varying vec3 vBackColor;
vec3 rotateVector(vec4 q, vec3 v)
{
return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);
}
vec4 quatFromAxisAngle(vec3 axis, float angle)
{
float halfAngle = angle * 0.5;
return vec4(axis.xyz * sin(halfAngle), cos(halfAngle));
}
vec3 cubicBezier(vec3 p0, vec3 p1, vec3 c0, vec3 c1, float t)
{
vec3 tp;
float tn = 1.0 - t;
tp.xyz = tn * tn * tn * p0.xyz + 3.0 * tn * tn * t * c0.xyz + 3.0 * tn * t * t * c1.xyz + t * t * t * p1.xyz;
return tp;
}
// t = time, b = begin value, c = change in value, d = duration
float easeOutCubic(float t, float b, float c, float d) {
return c * ((t = t / d - 1.0) * t * t + 1.0) + b;
}
float easeOutQuart(float t, float b, float c, float d) {
return -c * ((t = t / d - 1.0) * t * t * t - 1.0) + b;
}
float easeOutQuint(float t, float b, float c, float d) {
return c * ((t = t / d - 1.0) * t * t * t * t + 1.0) + b;
}
void main()
{
// determine progress based on time, duration and delay
float tDelay = aAnimation.x;
float tDuration = aAnimation.y;
float tTime = clamp(uTime - tDelay, 0.0, tDuration);
float tProgress = easeOutQuart(tTime, 0.0, 1.0, tDuration);
vec3 tPosition = position;
vec4 tQuat = quatFromAxisAngle(aAxisAngle.xyz, aAxisAngle.w * tProgress);
// calculate rotation (before translation)
tPosition = rotateVector(tQuat, tPosition);
// calculate position on bezier curve
vec3 tp0 = tPosition;
vec3 tp1 = tPosition + aTranslation;
vec3 tc0 = tPosition + aControlPoint0;
vec3 tc1 = tPosition + aControlPoint1;
tPosition = cubicBezier(tp0, tp1, tc0, tc1, tProgress);
// pass colors to fragment shader
vFrontColor = aFrontColor;
vBackColor = aBackColor;
// determine screen position
gl_Position = projectionMatrix * modelViewMatrix * vec4(tPosition, 1.0);
}
</script>
<script type="x-shader/x-fragment" id="fragmentShader">
varying vec3 vFrontColor;
varying vec3 vBackColor;
void main()
{
if (gl_FrontFacing)
{
gl_FragColor = vec4(vFrontColor, 1.0);
}
else
{
gl_FragColor = vec4(vBackColor, 1.0);
}
}
</script>
body {
margin: 0;
overflow: hidden;
}
// settings
var timeStep = (1/60);
var confettiCount = 150000;
var container;
var camera, scene, renderer;
var controls;
var shaderUniforms, shaderAttributes, confettiMaterial;
var time = 0;
init();
tick();
function init() {
createScene();
createControls();
createGrid();
createConfettiMaterial();
createConfettiPartycles();
window.addEventListener('resize', onWindowResize, false);
}
function createScene() {
container = document.getElementById('container');
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(70, window.innerWidth / window.innerHeight, 0.1, 2000);
camera.position.set(3.2474970423896035, 0.992230956080686, -3.2128363683730874);
//camera.lookAt(scene.position);
renderer = new THREE.WebGLRenderer({alpha:false, premultipliedAlpha:false, stencil:false});
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setClearColor(0xf5f5f5, 1);
container.appendChild(renderer.domElement);
}
function createControls() {
controls = new THREE.OrbitControls(camera, renderer.domElement);
}
function createConfettiMaterial() {
shaderAttributes = {
aAnimation: {type: "v2", value: null},
aTranslation: {type: "v3", value: null},
aControlPoint0: {type: "v3", value: null},
aControlPoint1: {type: "v3", value: null},
aAxisAngle: {type: "v4", value: null},
aFrontColor: {type: "c", value: null},
aBackColor: {type: "c", value: null}
};
shaderUniforms = {
uTime: {type: "f", value: 0}
};
confettiMaterial = new THREE.ShaderMaterial({
attributes: shaderAttributes,
uniforms: shaderUniforms,
vertexShader: document.getElementById("vertexShader").textContent,
fragmentShader: document.getElementById("fragmentShader").textContent
});
confettiMaterial.side = THREE.DoubleSide;
}
function createConfettiPartycles() {
var quads = confettiCount;
var triangles = quads * 2;
var chunkSize = 21845; // I don't remember why I chose this specific value :(
var i, j;
var geometry = new THREE.BufferGeometry();
// used to form rectangles
geometry.addAttribute('index', new THREE.BufferAttribute(new Uint16Array(triangles * 3), 1));
// duration and delay of the animation
geometry.addAttribute('aAnimation', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 2), 2)); // duration, delay
// the start position (0, 0, 0) for each piece of confetti
geometry.addAttribute('position', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3)); // aStartPosition
// the translation (delta movement) for each piece of confetti
geometry.addAttribute('aTranslation', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
// each piece of confetti will follow a bezier curve from start to end (start + translation) through the 2 control points
geometry.addAttribute('aControlPoint0', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
geometry.addAttribute('aControlPoint1', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
// an axis (x, y, z) and angle (0-2PI) which will be used to calculate rotation
geometry.addAttribute('aAxisAngle', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 4), 4));
// colors!
geometry.addAttribute('aFrontColor', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
geometry.addAttribute('aBackColor', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
// index buffer?
var indices = geometry.attributes.index.array;
for (i = 0; i < indices.length; i++) {
indices[i] = i % (3 * chunkSize);
}
// buffer animation vars
var animation = geometry.attributes.aAnimation.array;
for (i = 0; i < animation.length; i += 12) {
var delay = randomRange(0, 4);
var duration = randomRange(6, 10);
for (j = 0; j < 12; j += 2) {
// delay
animation[i + j + 0] = delay;
// duration
animation[i + j + 1] = duration;
}
}
// buffer start positions
var positions = geometry.attributes.position.array;
var halfWidth = 0.02;
var halfHeight = halfWidth * 0.6;
var a = new THREE.Vector3(-halfWidth, halfHeight, 0); // top-left
var b = new THREE.Vector3(halfWidth, halfHeight, 0); // top-right
var c = new THREE.Vector3(halfWidth, -halfHeight, 0); // bottom-right
var d = new THREE.Vector3(-halfWidth, -halfHeight, 0); // bottom-left
var vertices = [a, d, b, d, c, b], v;
for (i = 0; i < positions.length; i += 18) {
v = 0;
for (j = 0; j < 18; j += 3) {
positions[i + j + 0] = vertices[v].x;
positions[i + j + 1] = vertices[v].y;
positions[i + j + 2] = vertices[v].z;
v++;
}
}
// buffer translation
var translations = geometry.attributes.aTranslation.array;
var t = new THREE.Vector3();
for (i = 0; i < translations.length; i += 18) {
var phi = Math.random() * Math.PI * 2;
var radius = 4;
var x1 = randomRange(-4, 4);
var y1 = 0;
var z1 = randomRange(-4, 4);
t.x = x1 + radius * Math.cos(phi) * Math.random();
t.z = z1 + radius * Math.sin(phi) * Math.random();
for (j = 0; j < 18; j += 3) {
translations[i + j + 0] = t.x;
translations[i + j + 1] = t.y;
translations[i + j + 2] = t.z;
}
}
// buffer control points
var controlPoints0 = geometry.attributes.aControlPoint0.array;
var controlPoints1 = geometry.attributes.aControlPoint1.array;
var cp0 = new THREE.Vector3();
var cp1 = new THREE.Vector3();
for (i = 0; i < controlPoints0.length; i += 18) {
cp0.x = randomRange(-1, 1);
cp0.y = randomRange(6, 10);
cp0.z = randomRange(-1, 1);
cp1.x = randomRange(-8, 8);
cp1.y = randomRange(2, 10);
cp1.z = randomRange(-8, 8);
for (j = 0; j < 18; j += 3) {
controlPoints0[i + j + 0] = cp0.x;
controlPoints0[i + j + 1] = cp0.y;
controlPoints0[i + j + 2] = cp0.z;
controlPoints1[i + j + 0] = cp1.x;
controlPoints1[i + j + 1] = cp1.y;
controlPoints1[i + j + 2] = cp1.z;
}
}
// buffer axis and angle
var axisAngles = geometry.attributes.aAxisAngle.array;
var a = new THREE.Vector3();
for (i = 0; i < axisAngles.length; i += 24) {
// axis
a.x = Math.random();
a.y = 0;
a.z = Math.random();
a.normalize();
// angle
a.w = Math.PI * randomRange(20, 60);
for (j = 0; j < 24; j += 4) {
axisAngles[i + j + 0] = a.x;
axisAngles[i + j + 1] = a.y;
axisAngles[i + j + 2] = a.z;
axisAngles[i + j + 3] = a.w;
}
}
// buffer colors
var frontColors = geometry.attributes.aFrontColor.array;
var backColors = geometry.attributes.aBackColor.array;
var hue = 0;
var front = new THREE.Color();
var back = new THREE.Color();
for (i = 0; i < frontColors.length; i += 18) {
hue = Math.random();
front.setHSL(hue, 1.0, 0.5);
// make the back color darker
back.setHSL(hue, 0.65, 0.5);
for (j = 0; j < 18; j += 3) {
frontColors[i + j + 0] = front.r;
frontColors[i + j + 1] = front.g;
frontColors[i + j + 2] = front.b;
backColors[i + j + 0] = back.r;
backColors[i + j + 1] = back.g;
backColors[i + j + 2] = back.b;
}
}
// store offsets
var offsets = triangles / chunkSize;
for (i = 0; i < offsets; i++) {
var offset = {
start: i * chunkSize * 3,
index: i * chunkSize * 3,
count: Math.min(triangles - (i * chunkSize), chunkSize) * 3
};
geometry.drawcalls.push(offset);
}
var mesh = new THREE.Mesh(geometry, confettiMaterial);
// mesh.position.x = -5;
// mesh.position.y = -1;
scene.add(mesh);
}
function createGrid() {
var grid = new THREE.GridHelper(10, 1);
grid.setColors(0xc1c1c1, 0xc1c1c1);
scene.add(grid);
}
function tick() {
requestAnimationFrame(tick);
update();
render();
}
function update() {
// time is the only value that is updated at runtime
// this way the gpu can number-crunch the bezier path movement and rotations without being interrupted
shaderUniforms.uTime.value = time;
shaderUniforms.uTime.needsUpdate = true;
time += timeStep;
time %= 14; // make it loop
controls.update();
}
function render() {
renderer.render(scene, camera);
}
function onWindowResize() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
}
function randomRange(min, max) {
return Math.random() * (max - min) + min;
}
Also see: Tab Triggers