Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div id="container"></div>

<script type="x-shader/x-vertex" id="vertexShader">
    // delay and duration are used to calculate animation progress (0-1) for each vertex
    attribute vec2 aAnimation;
    // movement delta
    attribute vec3 aTranslation;
    // first control point for cubic bezier path
    attribute vec3 aControlPoint0;
    // second control point for cubic bezier path
    attribute vec3 aControlPoint1;
    // arbitrary normalized axis (x, y, z) and rotation (w) for quaternian rotation
    attribute vec4 aAxisAngle;
    // front vertex color
    attribute vec3 aFrontColor;
    // back vertex color
    attribute vec3 aBackColor;

    // time passed from the cpu
    uniform float uTime;

    varying vec3 vFrontColor;
    varying vec3 vBackColor;

    vec3 rotateVector(vec4 q, vec3 v)
    {
        return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);
    }

    vec4 quatFromAxisAngle(vec3 axis, float angle)
    {
        float halfAngle = angle * 0.5;

        return vec4(axis.xyz * sin(halfAngle), cos(halfAngle));
    }

    vec3 cubicBezier(vec3 p0, vec3 p1, vec3 c0, vec3 c1, float t)
    {
        vec3 tp;
        float tn = 1.0 - t;

        tp.xyz = tn * tn * tn * p0.xyz + 3.0 * tn * tn * t * c0.xyz + 3.0 * tn * t * t * c1.xyz + t * t * t * p1.xyz;

        return tp;
    }

    // t = time, b = begin value, c = change in value, d = duration
    float easeOutCubic(float t, float b, float c, float d) {
        return c * ((t = t / d - 1.0) * t * t + 1.0) + b;
    }
    float easeOutQuart(float t, float b, float c, float d) {
        return -c * ((t = t / d - 1.0) * t * t * t - 1.0) + b;
    }
    float easeOutQuint(float t, float b, float c, float d) {
        return c * ((t = t / d - 1.0) * t * t * t * t + 1.0) + b;
    }

    void main()
    {
        // determine progress based on time, duration and delay
        float tDelay = aAnimation.x;
        float tDuration = aAnimation.y;
        float tTime = clamp(uTime - tDelay, 0.0, tDuration);
        float tProgress = easeOutQuart(tTime, 0.0, 1.0, tDuration);

        vec3 tPosition = position;
        vec4 tQuat = quatFromAxisAngle(aAxisAngle.xyz, aAxisAngle.w * tProgress);

        // calculate rotation (before translation)
        tPosition = rotateVector(tQuat, tPosition);

        // calculate position on bezier curve
        vec3 tp0 = tPosition;
        vec3 tp1 = tPosition + aTranslation;
        vec3 tc0 = tPosition + aControlPoint0;
        vec3 tc1 = tPosition + aControlPoint1;
        tPosition = cubicBezier(tp0, tp1, tc0, tc1, tProgress);

        // pass colors to fragment shader
        vFrontColor = aFrontColor;
        vBackColor = aBackColor;

        // determine screen position
        gl_Position = projectionMatrix * modelViewMatrix * vec4(tPosition, 1.0);
    }
</script>

<script type="x-shader/x-fragment" id="fragmentShader">
    varying vec3 vFrontColor;
    varying vec3 vBackColor;

    void main()
    {
        if (gl_FrontFacing)
        {
            gl_FragColor = vec4(vFrontColor, 1.0);
        }
        else
        {
            gl_FragColor = vec4(vBackColor, 1.0);
        }

    }
</script>
              
            
!

CSS

              
                body {
  margin: 0;
  overflow: hidden;
}
              
            
!

JS

              
                // settings
var timeStep = (1/60);
var confettiCount = 150000;

var container;
var camera, scene, renderer;
var controls;

var shaderUniforms, shaderAttributes, confettiMaterial;

var time = 0;

init();
tick();

function init() {
    createScene();
    createControls();
    createGrid();
    createConfettiMaterial();
    createConfettiPartycles();

    window.addEventListener('resize', onWindowResize, false);
}

function createScene() {
    container = document.getElementById('container');

    scene = new THREE.Scene();

    camera = new THREE.PerspectiveCamera(70, window.innerWidth / window.innerHeight, 0.1, 2000);
    camera.position.set(3.2474970423896035, 0.992230956080686, -3.2128363683730874);
    //camera.lookAt(scene.position);

    renderer = new THREE.WebGLRenderer({alpha:false, premultipliedAlpha:false, stencil:false});
    renderer.setSize(window.innerWidth, window.innerHeight);
    renderer.setClearColor(0xf5f5f5, 1);

    container.appendChild(renderer.domElement);
}

function createControls() {
    controls = new THREE.OrbitControls(camera, renderer.domElement);
}

function createConfettiMaterial() {
    shaderAttributes = {
        aAnimation: {type: "v2", value: null},
        aTranslation: {type: "v3", value: null},
        aControlPoint0: {type: "v3", value: null},
        aControlPoint1: {type: "v3", value: null},
        aAxisAngle: {type: "v4", value: null},
        aFrontColor: {type: "c", value: null},
        aBackColor: {type: "c", value: null}
    };

    shaderUniforms = {
        uTime: {type: "f", value: 0}
    };

    confettiMaterial = new THREE.ShaderMaterial({
        attributes: shaderAttributes,
        uniforms: shaderUniforms,
        vertexShader: document.getElementById("vertexShader").textContent,
        fragmentShader: document.getElementById("fragmentShader").textContent
    });
    confettiMaterial.side = THREE.DoubleSide;
}

function createConfettiPartycles() {
    var quads = confettiCount;
    var triangles = quads * 2;
    var chunkSize = 21845; // I don't remember why I chose this specific value :(
    var i, j;

    var geometry = new THREE.BufferGeometry();
    // used to form rectangles
    geometry.addAttribute('index', new THREE.BufferAttribute(new Uint16Array(triangles * 3), 1));
    // duration and delay of the animation
    geometry.addAttribute('aAnimation', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 2), 2)); // duration, delay
    // the start position (0, 0, 0) for each piece of confetti
    geometry.addAttribute('position', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3)); // aStartPosition
    // the translation (delta movement) for each piece of confetti
    geometry.addAttribute('aTranslation', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
    // each piece of confetti will follow a bezier curve from start to end (start + translation) through the 2 control points
    geometry.addAttribute('aControlPoint0', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
    geometry.addAttribute('aControlPoint1', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
    // an axis (x, y, z) and angle (0-2PI) which will be used to calculate rotation
    geometry.addAttribute('aAxisAngle', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 4), 4));
    // colors!
    geometry.addAttribute('aFrontColor', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));
    geometry.addAttribute('aBackColor', new THREE.BufferAttribute(new Float32Array(triangles * 3 * 3), 3));

    // index buffer?
    var indices = geometry.attributes.index.array;

    for (i = 0; i < indices.length; i++) {
        indices[i] = i % (3 * chunkSize);
    }

    // buffer animation vars
    var animation = geometry.attributes.aAnimation.array;

    for (i = 0; i < animation.length; i += 12) {

        var delay = randomRange(0, 4);
        var duration = randomRange(6, 10);

        for (j = 0; j < 12; j += 2) {
            // delay
            animation[i + j + 0] = delay;
            // duration
            animation[i + j + 1] = duration;
        }
    }

    // buffer start positions
    var positions = geometry.attributes.position.array;
    var halfWidth = 0.02;
    var halfHeight = halfWidth * 0.6;
    var a = new THREE.Vector3(-halfWidth, halfHeight, 0); // top-left
    var b = new THREE.Vector3(halfWidth, halfHeight, 0); // top-right
    var c = new THREE.Vector3(halfWidth, -halfHeight, 0); // bottom-right
    var d = new THREE.Vector3(-halfWidth, -halfHeight, 0); // bottom-left
    var vertices = [a, d, b, d, c, b], v;

    for (i = 0; i < positions.length; i += 18) {
        v = 0;

        for (j = 0; j < 18; j += 3) {
            positions[i + j + 0] = vertices[v].x;
            positions[i + j + 1] = vertices[v].y;
            positions[i + j + 2] = vertices[v].z;

            v++;
        }
    }

    // buffer translation
    var translations = geometry.attributes.aTranslation.array;
    var t = new THREE.Vector3();

    for (i = 0; i < translations.length; i += 18) {
        var phi = Math.random() * Math.PI * 2;
        var radius = 4;
        var x1 = randomRange(-4, 4);
        var y1 = 0;
        var z1 = randomRange(-4, 4);

        t.x = x1 + radius * Math.cos(phi) * Math.random();
        t.z = z1 + radius * Math.sin(phi) * Math.random();

        for (j = 0; j < 18; j += 3) {
            translations[i + j + 0] = t.x;
            translations[i + j + 1] = t.y;
            translations[i + j + 2] = t.z;
        }
    }

    // buffer control points
    var controlPoints0 = geometry.attributes.aControlPoint0.array;
    var controlPoints1 = geometry.attributes.aControlPoint1.array;
    var cp0 = new THREE.Vector3();
    var cp1 = new THREE.Vector3();

    for (i = 0; i < controlPoints0.length; i += 18) {
        cp0.x = randomRange(-1, 1);
        cp0.y = randomRange(6, 10);
        cp0.z = randomRange(-1, 1);

        cp1.x = randomRange(-8, 8);
        cp1.y = randomRange(2, 10);
        cp1.z = randomRange(-8, 8);

        for (j = 0; j < 18; j += 3) {
            controlPoints0[i + j + 0] = cp0.x;
            controlPoints0[i + j + 1] = cp0.y;
            controlPoints0[i + j + 2] = cp0.z;

            controlPoints1[i + j + 0] = cp1.x;
            controlPoints1[i + j + 1] = cp1.y;
            controlPoints1[i + j + 2] = cp1.z;
        }
    }

    // buffer axis and angle
    var axisAngles = geometry.attributes.aAxisAngle.array;
    var a = new THREE.Vector3();

    for (i = 0; i < axisAngles.length; i += 24) {
        // axis
        a.x = Math.random();
        a.y = 0;
        a.z = Math.random();
        a.normalize();
        // angle
        a.w = Math.PI * randomRange(20, 60);

        for (j = 0; j < 24; j += 4) {
            axisAngles[i + j + 0] = a.x;
            axisAngles[i + j + 1] = a.y;
            axisAngles[i + j + 2] = a.z;
            axisAngles[i + j + 3] = a.w;
        }
    }

    // buffer colors
    var frontColors = geometry.attributes.aFrontColor.array;
    var backColors = geometry.attributes.aBackColor.array;

    var hue = 0;
    var front = new THREE.Color();
    var back = new THREE.Color();

    for (i = 0; i < frontColors.length; i += 18) {
        hue = Math.random();
        front.setHSL(hue, 1.0, 0.5);
        // make the back color darker
        back.setHSL(hue, 0.65, 0.5);

        for (j = 0; j < 18; j += 3) {
            frontColors[i + j + 0] = front.r;
            frontColors[i + j + 1] = front.g;
            frontColors[i + j + 2] = front.b;

            backColors[i + j + 0] = back.r;
            backColors[i + j + 1] = back.g;
            backColors[i + j + 2] = back.b;
        }
    }

    // store offsets
    var offsets = triangles / chunkSize;

    for (i = 0; i < offsets; i++) {
        var offset = {
            start: i * chunkSize * 3,
            index: i * chunkSize * 3,
            count: Math.min(triangles - (i * chunkSize), chunkSize) * 3
        };

        geometry.drawcalls.push(offset);
    }

    var mesh = new THREE.Mesh(geometry, confettiMaterial);
    // mesh.position.x = -5;
    // mesh.position.y = -1;

    scene.add(mesh);
}

function createGrid() {
    var grid = new THREE.GridHelper(10, 1);
    grid.setColors(0xc1c1c1, 0xc1c1c1);
    scene.add(grid);
}

function tick() {
    requestAnimationFrame(tick);

    update();
    render();
}

function update() {
    // time is the only value that is updated at runtime
    // this way the gpu can number-crunch the bezier path movement and rotations without being interrupted
    shaderUniforms.uTime.value = time;
    shaderUniforms.uTime.needsUpdate = true;

    time += timeStep;
    time %= 14; // make it loop

    controls.update();
}

function render() {
    renderer.render(scene, camera);
}

function onWindowResize() {
    camera.aspect = window.innerWidth / window.innerHeight;
    camera.updateProjectionMatrix();

    renderer.setSize(window.innerWidth, window.innerHeight);
}

function randomRange(min, max) {
    return Math.random() * (max - min) + min;
}

              
            
!
999px

Console