HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="three-container"></div>
body {
margin: 0;
overflow: hidden;
cursor: move;
}
var mContainer;
var mCamera, mRenderer;
var mControls;
var mScene;
var mParticleCount = 100000; // <-- change this number!
var mParticleSystem;
var mTime = 0.0;
var mTimeStep = (1/60);
var mDuration = 20;
window.onload = function () {
init();
};
function init() {
initTHREE();
initControls();
initParticleSystem();
requestAnimationFrame(tick);
window.addEventListener('resize', resize, false);
}
function initTHREE() {
mRenderer = new THREE.WebGLRenderer({antialias: true});
mRenderer.setSize(window.innerWidth, window.innerHeight);
mContainer = document.getElementById('three-container');
mContainer.appendChild(mRenderer.domElement);
mCamera = new THREE.PerspectiveCamera(60, window.innerWidth / window.innerHeight, 0.1, 5000);
mCamera.position.set(0, 600, 600);
mScene = new THREE.Scene();
var light;
light = new THREE.PointLight(0xffffff, 4, 1000, 2);
light.position.set(0, 400, 0);
mScene.add(light);
}
function initControls() {
mControls = new THREE.OrbitControls(mCamera, mRenderer.domElement);
}
function initParticleSystem() {
var prefabGeometry = new THREE.PlaneGeometry(4, 4);
var bufferGeometry = new THREE.BAS.PrefabBufferGeometry(prefabGeometry, mParticleCount);
bufferGeometry.computeVertexNormals();
// generate additional geometry data
var aOffset = bufferGeometry.createAttribute('aOffset', 1);
var aStartPosition = bufferGeometry.createAttribute('aStartPosition', 3);
var aControlPoint1 = bufferGeometry.createAttribute('aControlPoint1', 3);
var aControlPoint2 = bufferGeometry.createAttribute('aControlPoint2', 3);
var aEndPosition = bufferGeometry.createAttribute('aEndPosition', 3);
var aAxisAngle = bufferGeometry.createAttribute('aAxisAngle', 4);
var aColor = bufferGeometry.createAttribute('color', 3);
var i, j, offset;
// buffer time offset
var delay;
for (i = 0, offset = 0; i < mParticleCount; i++) {
delay = i / mParticleCount * mDuration;
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aOffset.array[offset++] = delay;
}
}
// buffer start positions
var x, y, z;
for (i = 0, offset = 0; i < mParticleCount; i++) {
x = -1000;
y = 0;
z = 0;
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aStartPosition.array[offset++] = x;
aStartPosition.array[offset++] = y;
aStartPosition.array[offset++] = z;
}
}
// buffer control points
for (i = 0, offset = 0; i < mParticleCount; i++) {
x = THREE.Math.randFloat(-400, 400);
y = THREE.Math.randFloat(400, 600);
z = THREE.Math.randFloat(-1200, -800);
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aControlPoint1.array[offset++] = x;
aControlPoint1.array[offset++] = y;
aControlPoint1.array[offset++] = z;
}
}
for (i = 0, offset = 0; i < mParticleCount; i++) {
x = THREE.Math.randFloat(-400, 400);
y = THREE.Math.randFloat(-600, -400);
z = THREE.Math.randFloat(800, 1200);
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aControlPoint2.array[offset++] = x;
aControlPoint2.array[offset++] = y;
aControlPoint2.array[offset++] = z;
}
}
// buffer end positions
for (i = 0, offset = 0; i < mParticleCount; i++) {
x = 1000;
y = 0;
z = 0;
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aEndPosition.array[offset++] = x;
aEndPosition.array[offset++] = y;
aEndPosition.array[offset++] = z;
}
}
// buffer axis angle
var axis = new THREE.Vector3();
var angle = 0;
for (i = 0, offset = 0; i < mParticleCount; i++) {
axis.x = THREE.Math.randFloatSpread(2);
axis.y = THREE.Math.randFloatSpread(2);
axis.z = THREE.Math.randFloatSpread(2);
axis.normalize();
angle = Math.PI * THREE.Math.randInt(16, 32);
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aAxisAngle.array[offset++] = axis.x;
aAxisAngle.array[offset++] = axis.y;
aAxisAngle.array[offset++] = axis.z;
aAxisAngle.array[offset++] = angle;
}
}
// buffer color
var color = new THREE.Color();
var h, s, l;
for (i = 0, offset = 0; i < mParticleCount; i++) {
h = i / mParticleCount;
s = THREE.Math.randFloat(0.4, 0.6);
l = THREE.Math.randFloat(0.4, 0.6);
color.setHSL(h, s, l);
for (j = 0; j < prefabGeometry.vertices.length; j++) {
aColor.array[offset++] = color.r;
aColor.array[offset++] = color.g;
aColor.array[offset++] = color.b;
}
}
var material = new THREE.BAS.PhongAnimationMaterial(
// custom parameters & THREE.MeshPhongMaterial parameters
{
vertexColors: THREE.VertexColors,
shading: THREE.FlatShading,
side: THREE.DoubleSide,
uniforms: {
uTime: {type: 'f', value: 0},
uDuration: {type: 'f', value: mDuration}
},
shaderFunctions: [
THREE.BAS.ShaderChunk['quaternion_rotation'],
THREE.BAS.ShaderChunk['cubic_bezier']
],
shaderParameters: [
'uniform float uTime;',
'uniform float uDuration;',
'attribute float aOffset;',
'attribute vec3 aStartPosition;',
'attribute vec3 aControlPoint1;',
'attribute vec3 aControlPoint2;',
'attribute vec3 aEndPosition;',
'attribute vec4 aAxisAngle;'
],
shaderVertexInit: [
'float tProgress = mod((uTime + aOffset), uDuration) / uDuration;',
'float angle = aAxisAngle.w * tProgress;',
'vec4 tQuat = quatFromAxisAngle(aAxisAngle.xyz, angle);'
],
shaderTransformNormal: [
'objectNormal = rotateVector(tQuat, objectNormal);'
],
shaderTransformPosition: [
'transformed = rotateVector(tQuat, transformed);',
'transformed += cubicBezier(aStartPosition, aControlPoint1, aControlPoint2, aEndPosition, tProgress);'
]
},
// THREE.MeshPhongMaterial uniforms
{
specular: 0xff0000,
shininess: 20
}
);
mParticleSystem = new THREE.Mesh(bufferGeometry, material);
// because the bounding box of the particle system does not reflect its on-screen size
// set this to false to prevent the whole thing from disappearing on certain angles
mParticleSystem.frustumCulled = false;
mScene.add(mParticleSystem);
}
function tick() {
update();
render();
mTime += mTimeStep;
mTime %= mDuration;
requestAnimationFrame(tick);
}
function update() {
mControls.update();
mParticleSystem.material.uniforms['uTime'].value = mTime;
}
function render() {
mRenderer.render(mScene, mCamera);
}
function resize() {
mCamera.aspect = window.innerWidth / window.innerHeight;
mCamera.updateProjectionMatrix();
mRenderer.setSize(window.innerWidth, window.innerHeight);
}
/////////////////////////////
// buffer animation system
/////////////////////////////
THREE.BAS = {};
THREE.BAS.ShaderChunk = {};
THREE.BAS.ShaderChunk["animation_time"] = "float tDelay = aAnimation.x;\nfloat tDuration = aAnimation.y;\nfloat tTime = clamp(uTime - tDelay, 0.0, tDuration);\nfloat tProgress = ease(tTime, 0.0, 1.0, tDuration);\n";
THREE.BAS.ShaderChunk["cubic_bezier"] = "vec3 cubicBezier(vec3 p0, vec3 c0, vec3 c1, vec3 p1, float t)\n{\n vec3 tp;\n float tn = 1.0 - t;\n\n tp.xyz = tn * tn * tn * p0.xyz + 3.0 * tn * tn * t * c0.xyz + 3.0 * tn * t * t * c1.xyz + t * t * t * p1.xyz;\n\n return tp;\n}\n";
THREE.BAS.ShaderChunk["ease_in_cubic"] = "float ease(float t, float b, float c, float d) {\n return c*(t/=d)*t*t + b;\n}\n";
THREE.BAS.ShaderChunk["ease_in_quad"] = "float ease(float t, float b, float c, float d) {\n return c*(t/=d)*t + b;\n}\n";
THREE.BAS.ShaderChunk["ease_out_cubic"] = "float ease(float t, float b, float c, float d) {\n return c*((t=t/d - 1.0)*t*t + 1.0) + b;\n}\n";
THREE.BAS.ShaderChunk["quaternion_rotation"] = "vec3 rotateVector(vec4 q, vec3 v)\n{\n return v + 2.0 * cross(q.xyz, cross(q.xyz, v) + q.w * v);\n}\n\nvec4 quatFromAxisAngle(vec3 axis, float angle)\n{\n float halfAngle = angle * 0.5;\n return vec4(axis.xyz * sin(halfAngle), cos(halfAngle));\n}\n";
THREE.BAS.PrefabBufferGeometry = function (prefab, count) {
THREE.BufferGeometry.call(this);
this.prefabGeometry = prefab;
this.prefabCount = count;
this.prefabVertexCount = prefab.vertices.length;
this.bufferDefaults();
};
THREE.BAS.PrefabBufferGeometry.prototype = Object.create(THREE.BufferGeometry.prototype);
THREE.BAS.PrefabBufferGeometry.prototype.constructor = THREE.BAS.PrefabBufferGeometry;
THREE.BAS.PrefabBufferGeometry.prototype.bufferDefaults = function () {
var prefabFaceCount = this.prefabGeometry.faces.length;
var prefabIndexCount = this.prefabGeometry.faces.length * 3;
var prefabVertexCount = this.prefabVertexCount = this.prefabGeometry.vertices.length;
var prefabIndices = [];
//console.log('prefabCount', this.prefabCount);
//console.log('prefabFaceCount', prefabFaceCount);
//console.log('prefabIndexCount', prefabIndexCount);
//console.log('prefabVertexCount', prefabVertexCount);
//console.log('triangles', prefabFaceCount * this.prefabCount);
for (var h = 0; h < prefabFaceCount; h++) {
var face = this.prefabGeometry.faces[h];
prefabIndices.push(face.a, face.b, face.c);
}
var indexBuffer = new Uint32Array(this.prefabCount * prefabIndexCount);
var positionBuffer = new Float32Array(this.prefabCount * prefabVertexCount * 3);
this.setIndex(new THREE.BufferAttribute(indexBuffer, 1));
this.addAttribute('position', new THREE.BufferAttribute(positionBuffer, 3));
for (var i = 0, offset = 0; i < this.prefabCount; i++) {
for (var j = 0; j < prefabVertexCount; j++, offset += 3) {
var prefabVertex = this.prefabGeometry.vertices[j];
positionBuffer[offset ] = prefabVertex.x;
positionBuffer[offset + 1] = prefabVertex.y;
positionBuffer[offset + 2] = prefabVertex.z;
}
for (var k = 0; k < prefabIndexCount; k++) {
indexBuffer[i * prefabIndexCount + k] = prefabIndices[k] + i * prefabVertexCount;
}
}
};
// todo test
THREE.BAS.PrefabBufferGeometry.prototype.bufferUvs = function() {
var prefabFaceCount = this.prefabGeometry.faces.length;
var prefabVertexCount = this.prefabVertexCount = this.prefabGeometry.vertices.length;
var prefabUvs = [];
for (var h = 0; h < prefabFaceCount; h++) {
var face = this.prefabGeometry.faces[h];
var uv = this.prefabGeometry.faceVertexUvs[0][h];
prefabUvs[face.a] = uv[0];
prefabUvs[face.b] = uv[1];
prefabUvs[face.c] = uv[2];
}
var uvBuffer = this.createAttribute('uv', 2);
for (var i = 0, offset = 0; i < this.prefabCount; i++) {
for (var j = 0; j < prefabVertexCount; j++, offset += 2) {
var prefabUv = prefabUvs[j];
uvBuffer.array[offset] = prefabUv.x;
uvBuffer.array[offset + 1] = prefabUv.y;
}
}
};
/**
* based on BufferGeometry.computeVertexNormals
* calculate vertex normals for a prefab, and repeat the data in the normal buffer
*/
THREE.BAS.PrefabBufferGeometry.prototype.computeVertexNormals = function () {
var index = this.index;
var attributes = this.attributes;
var positions = attributes.position.array;
if (attributes.normal === undefined) {
this.addAttribute('normal', new THREE.BufferAttribute(new Float32Array(positions.length), 3));
}
var normals = attributes.normal.array;
var vA, vB, vC,
pA = new THREE.Vector3(),
pB = new THREE.Vector3(),
pC = new THREE.Vector3(),
cb = new THREE.Vector3(),
ab = new THREE.Vector3();
var indices = index.array;
var prefabIndexCount = this.prefabGeometry.faces.length * 3;
for (var i = 0; i < prefabIndexCount; i += 3) {
vA = indices[i + 0] * 3;
vB = indices[i + 1] * 3;
vC = indices[i + 2] * 3;
pA.fromArray(positions, vA);
pB.fromArray(positions, vB);
pC.fromArray(positions, vC);
cb.subVectors(pC, pB);
ab.subVectors(pA, pB);
cb.cross(ab);
normals[vA] += cb.x;
normals[vA + 1] += cb.y;
normals[vA + 2] += cb.z;
normals[vB] += cb.x;
normals[vB + 1] += cb.y;
normals[vB + 2] += cb.z;
normals[vC] += cb.x;
normals[vC + 1] += cb.y;
normals[vC + 2] += cb.z;
}
for (var j = 1; j < this.prefabCount; j++) {
for (var k = 0; k < prefabIndexCount; k++) {
normals[j * prefabIndexCount + k] = normals[k];
}
}
this.normalizeNormals();
attributes.normal.needsUpdate = true;
};
THREE.BAS.PrefabBufferGeometry.prototype.createAttribute = function (name, itemSize) {
var buffer = new Float32Array(this.prefabCount * this.prefabVertexCount * itemSize);
var attribute = new THREE.BufferAttribute(buffer, itemSize);
this.addAttribute(name, attribute);
return attribute;
};
THREE.BAS.PrefabBufferGeometry.prototype.setAttribute4 = function (name, data) {
var offset = 0;
var array = this.geometry.attributes[name].array;
var i, j;
for (i = 0; i < data.length; i++) {
var v = data[i];
for (j = 0; j < this.prefabVertexCount; j++) {
array[offset++] = v.x;
array[offset++] = v.y;
array[offset++] = v.z;
array[offset++] = v.w;
}
}
this.geometry.attributes[name].needsUpdate = true;
};
THREE.BAS.PrefabBufferGeometry.prototype.setAttribute3 = function (name, data) {
var offset = 0;
var array = this.geometry.attributes[name].array;
var i, j;
for (i = 0; i < data.length; i++) {
var v = data[i];
for (j = 0; j < this.prefabVertexCount; j++) {
array[offset++] = v.x;
array[offset++] = v.y;
array[offset++] = v.z;
}
}
this.geometry.attributes[name].needsUpdate = true;
};
THREE.BAS.PrefabBufferGeometry.prototype.setAttribute2 = function (name, data) {
var offset = 0;
var array = this.geometry.attributes[name].array;
var i, j;
for (i = 0; i < this.prefabCount; i++) {
var v = data[i];
for (j = 0; j < this.prefabVertexCount; j++) {
array[offset++] = v.x;
array[offset++] = v.y;
}
}
this.geometry.attributes[name].needsUpdate = true;
};
THREE.BAS.BaseAnimationMaterial = function(parameters) {
THREE.ShaderMaterial.call(this);
this.shaderFunctions = [];
this.shaderParameters = [];
this.shaderVertexInit = [];
this.shaderTransformNormal = [];
this.shaderTransformPosition = [];
this.setValues(parameters);
};
THREE.BAS.BaseAnimationMaterial.prototype = Object.create(THREE.ShaderMaterial.prototype);
THREE.BAS.BaseAnimationMaterial.prototype.constructor = THREE.BAS.BaseAnimationMaterial;
// abstract
THREE.BAS.BaseAnimationMaterial.prototype._concatVertexShader = function() {
return '';
};
THREE.BAS.BaseAnimationMaterial.prototype._concatFunctions = function() {
return this.shaderFunctions.join('\n');
};
THREE.BAS.BaseAnimationMaterial.prototype._concatParameters = function() {
return this.shaderParameters.join('\n');
};
THREE.BAS.BaseAnimationMaterial.prototype._concatVertexInit = function() {
return this.shaderVertexInit.join('\n');
};
THREE.BAS.BaseAnimationMaterial.prototype._concatTransformNormal = function() {
return this.shaderTransformNormal.join('\n');
};
THREE.BAS.BaseAnimationMaterial.prototype._concatTransformPosition = function() {
return this.shaderTransformPosition.join('\n');
};
THREE.BAS.BaseAnimationMaterial.prototype.setUniformValues = function(values) {
for (var key in values) {
if (key in this.uniforms) {
var uniform = this.uniforms[key];
var value = values[key];
// todo add matrix uniform types
switch (uniform.type) {
case 'c': // color
uniform.value.set(value);
break;
case 'v2': // vectors
case 'v3':
case 'v4':
uniform.value.copy(value);
break;
case 'f': // float
case 't': // texture
uniform.value = value;
}
}
}
};
THREE.BAS.PhongAnimationMaterial = function(parameters, uniformValues) {
THREE.BAS.BaseAnimationMaterial.call(this, parameters);
var phongShader = THREE.ShaderLib['phong'];
this.uniforms = THREE.UniformsUtils.merge([phongShader.uniforms, this.uniforms]);
this.lights = true;
this.vertexShader = this._concatVertexShader();
this.fragmentShader = phongShader.fragmentShader;
// todo add missing default defines
uniformValues.map && (this.defines['USE_MAP'] = '');
uniformValues.normalMap && (this.defines['USE_NORMALMAP'] = '');
this.setUniformValues(uniformValues);
};
THREE.BAS.PhongAnimationMaterial.prototype = Object.create(THREE.BAS.BaseAnimationMaterial.prototype);
THREE.BAS.PhongAnimationMaterial.prototype.constructor = THREE.BAS.PhongAnimationMaterial;
THREE.BAS.PhongAnimationMaterial.prototype._concatVertexShader = function() {
// based on THREE.ShaderLib.phong
return [
"#define PHONG",
"varying vec3 vViewPosition;",
"#ifndef FLAT_SHADED",
" varying vec3 vNormal;",
"#endif",
THREE.ShaderChunk[ "common" ],
THREE.ShaderChunk[ "uv_pars_vertex" ],
THREE.ShaderChunk[ "uv2_pars_vertex" ],
THREE.ShaderChunk[ "displacementmap_pars_vertex" ],
THREE.ShaderChunk[ "envmap_pars_vertex" ],
THREE.ShaderChunk[ "lights_phong_pars_vertex" ],
THREE.ShaderChunk[ "color_pars_vertex" ],
THREE.ShaderChunk[ "morphtarget_pars_vertex" ],
THREE.ShaderChunk[ "skinning_pars_vertex" ],
THREE.ShaderChunk[ "shadowmap_pars_vertex" ],
THREE.ShaderChunk[ "logdepthbuf_pars_vertex" ],
this._concatFunctions(),
this._concatParameters(),
"void main() {",
this._concatVertexInit(),
THREE.ShaderChunk[ "uv_vertex" ],
THREE.ShaderChunk[ "uv2_vertex" ],
THREE.ShaderChunk[ "color_vertex" ],
THREE.ShaderChunk[ "beginnormal_vertex" ],
this._concatTransformNormal(),
THREE.ShaderChunk[ "morphnormal_vertex" ],
THREE.ShaderChunk[ "skinbase_vertex" ],
THREE.ShaderChunk[ "skinnormal_vertex" ],
THREE.ShaderChunk[ "defaultnormal_vertex" ],
"#ifndef FLAT_SHADED", // Normal computed with derivatives when FLAT_SHADED
" vNormal = normalize( transformedNormal );",
"#endif",
THREE.ShaderChunk[ "begin_vertex" ],
this._concatTransformPosition(),
THREE.ShaderChunk[ "displacementmap_vertex" ],
THREE.ShaderChunk[ "morphtarget_vertex" ],
THREE.ShaderChunk[ "skinning_vertex" ],
THREE.ShaderChunk[ "project_vertex" ],
THREE.ShaderChunk[ "logdepthbuf_vertex" ],
" vViewPosition = - mvPosition.xyz;",
THREE.ShaderChunk[ "worldpos_vertex" ],
THREE.ShaderChunk[ "envmap_vertex" ],
THREE.ShaderChunk[ "lights_phong_vertex" ],
THREE.ShaderChunk[ "shadowmap_vertex" ],
"}"
].join( "\n" );
};
Also see: Tab Triggers