HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
canvas
{
position:fixed;
top:0px;
left:0px;
}
/* -------------- POINT.JS ------------*/
var Point = function(x,y) {
this.x = x;
this.y = y;
};
Point.prototype = {
x:0,
y:0,
subtract:function(p) {
return new Point(this.x-p.x,this.y-p.y)
},
add:function(p) {
return new Point(this.x+p.x,this.y+p.y)
},
clone:function() {
return new Point(this.x,this.y);
},
getNormal:function() {
return new Point(-this.y,this.x);
},
angle:function() {
return Math.atan2(this.y,this.x);
},
fromPolar:function (angle, length) {
var l = length||1;
return new Point(l*Math.cos(angle),l*Math.sin(angle));
},
lerp:function(a,b,pi) {
this.x = pi*b.x+(1-pi)*a.x;
this.y = pi*b.y+(1-pi)*a.y;
return this;
},
scaleBy:function(amt) {
this.x*=amt;
this.y*=amt;
return this;
},
length:function() {
return Math.sqrt(this.x*this.x+this.y*this.y)
},
dot:function(b) {
return this.x*b.x+this.y*b.y;
},
normalize:function(len) {
var mag = len||1;
var curLen = this.length();
this.x/=curLen/mag;
this.y/=curLen/mag;
return this;
},
mean:function(pointList) {
var x = 0;
var y = 0;
for(var i = 0;i<pointList.length;i++)
{
x+=pointList[i].x;
y+=pointList[i].y;
}
x/= pointList.length;
y/= pointList.length;
return new Point(x,y);
}
};
/*------------UTIL.JS------------*/
var Util = {
STANDARD:0,
REQUIRES_POSITIVE_T:1,
REQUIRES_POSITIVE_U:2,
REQUIRES_POSITIVE_BOTH:3,
scalePoints:function(pts,amount, origin)
{
var outPoints = [];
if(origin==null)
{
origin = new Point().mean(pts);
}
for(var i =0;i<pts.length;i++)
{
var pIn = pts[i];
var pOut = pts[i].subtract(origin).scaleBy(amount).add(origin);
outPoints.push(pOut);
}
return outPoints;
},
reflect:function(ray, normal)
{
var v = ray.clone();
var l = normal.clone();
v.normalize();
l.normalize();
var reflection = l.scaleBy(2*(v.dot(l))/(l.dot(l))).subtract(v)
return reflection;
},
intersectPolygon:function(a_p1,a_r1, polygon,mode) {
//let's look for the one with the lowest positive t-value...
// x("checking...",a_p1,a_r1,polygon);
if(mode==undefined) mode==1;
var points = polygon.points
var collisionCandidates = [];
var sideLength = points[0].subtract(points[1]).length();
for(var i = 0;i<points.length;i++)
{
var p2 = points[i];
var pNext = points[(i+1)%points.length];
var r2 = points[i].subtract(pNext);
r2.normalize();
var colSet = Util.intersect(a_p1,a_r1,points[i],r2);
colSet.a = p2;
colSet.b = pNext;
if(Math.abs(colSet.tValue)>1e-5) {
if(mode==1&&colSet.tValue>0) collisionCandidates.push(colSet);
if(mode==2&&colSet.uValue>0) collisionCandidates.push(colSet);
if(mode==0) {
colSet.tValue = Math.abs(colSet.tValue);
collisionCandidates.push(colSet);
} if(mode==3&&colSet.tValue>0&&colSet.uValue>0&&colSet.uValue<sideLength)
{
collisionCandidates.push(colSet);
}
}
}
if(collisionCandidates.length==0) {
return null;
}
collisionCandidates.sort(function(a,b) {return a.tValue-b.tValue;});
var best = collisionCandidates[0];
// console.log(best);
var pt = new Point(best.xIntercept,best.yIntercept);
pt.tValue = best.tValue;
pt.uValue = best.uValue;
console.log("adding an a and b - ",best.a,best.b)
pt.a = best.a;
pt.b = best.b;
return pt;
},
intersect:function (a_p1,a_r1,a_p2,a_r2) {
a_r1.normalize(1);
a_r2.normalize(1);
var returner= new Object();
try {
var ta = a_r1.y/a_r1.x;
var tb = a_p1.y-ta*a_p1.x;
var tc = a_r2.y/a_r2.x;
var td = a_p2.y-tc*a_p2.x;
/*trace("Intermediaries:\n-----------");
we have y = ax+b
and y=cx+d.
if c
*/
/*trace("a:"+ta);
trace("b:"+tb);
trace("c:"+tc);
trace("d:"+td);
*/
returner.xIntercept = (td-tb)/(ta-tc);
returner.yIntercept = ta*returner.xIntercept +tb;
if (Math.abs(ta)==Infinity) {
//r1 is vertical
returner.xIntercept = a_p1.x;
returner.yIntercept = tc * returner.xIntercept + td;
} else if (Math.abs(tc)==Infinity) {
//r2 is vertical
returner.xIntercept = a_p2.x;
returner.yIntercept = returner.xIntercept * ta + tb;
} else if(Math.abs(ta)==0) {
//r1 is horizontal
returner.yIntercept = a_p2.y; //
returner.xIntercept = (returner.yIntercept-td)/tc ;
}
var m = returner.xIntercept;
var p = a_p1.x;
var q = a_r1.x;
/*
* The approach that seems to work more robustly is
* that we have the x-intercept.
* if we divide the difference between the origin, a_p1.x, by the
* ray's x magnitude, a_p1.x-a_r1.x,
* */
// returner.tValue = (returner.xIntercept - a_p1.x) / (a_r1.x);
if (returner.xIntercept == a_p1.x) {
//we'll use yIntercept.
// returner.tValue = (returner.yIntercept - a_p1.y) / (a_r1.y);
}
returner.tValue = (a_p1.x-returner.xIntercept ) / (a_r1.x);
returner.uValue = (a_p2.x-returner.xIntercept ) / (a_r2.x);
// if (returner.xIntercept == a_r2.x) {
// we'll use yIntercept.
// returner.uValue = (returner.yIntercept - a_r2.y) / (a_r2.y);
// }
returner.mirrorPi = (returner.xIntercept-a_r2.x)/(a_p2.x-a_r2.x);
} catch (e) {
}
returner.point = new Point(returner.xIntercept,returner.yIntercept);
return returner;
},
drawSketchStroke:function(a,b,g,extension,innerAlpha,jitter) {
if(extension==null) extension = 100;
if(innerAlpha==null) innerAlpha = 1;
if(jitter==null) jitter = 0;
var len = a.subtract(b).length();
var overshootAmount = (len+extension)/len;
var overshoot = Util.scalePoints([a,b],overshootAmount)
g.beginPath();
// var grad = g.createLinearGradient(mousePoint.x,mousePoint.y, os.points[i].x,os.points[i].y);
var grad = g.createLinearGradient(overshoot[0].x,overshoot[0].y,overshoot[1].x,overshoot[1].y);
grad.addColorStop(0,"rgba(20,0,0,0)");
grad.addColorStop(0.1,"rgba(20,0,0,"+innerAlpha+")");
grad.addColorStop(0.9,"rgba(20,0,0,"+innerAlpha+")");
grad.addColorStop(1,"rgba(20,0,0,0)");
g.strokeStyle = grad;
// this.drawRay(os.points[i], ray, g);
g.moveTo(overshoot[0].x,overshoot[0].y);
var segments = 10;
var normal = a.subtract(b).normalize().getNormal();
for(var i =0;i<segments;i++){
var normalOffset = normal.clone().scaleBy((Math.random()-0.5)*jitter);
var pInternal = new Point().lerp(a,b,i/segments).add(normalOffset);
g.lineTo(pInternal.x,pInternal.y);
}
g.lineTo(overshoot[1].x,overshoot[1].y);
g.stroke();
},
drawRay:function(p,r,g,drawHead) {
if(drawHead==null) drawHead = false;
g.moveTo(p.x,p.y);
var headSize = 10;
var tangent = (r);
tangent.normalize();
normal = tangent.getNormal();
var head = new Point(p.x+100*r.x,p.y+100* r.y);
g.lineTo(p.x+1000*r.x,p.y+1000* r.y);
if(drawHead)
{
g.moveTo(head.x,head.y)
g.lineTo(head.x+headSize*normal.x-headSize*tangent.x,head.y+headSize*normal.y-headSize*tangent.y);
g.moveTo(head.x,head.y)
g.lineTo(head.x-headSize*normal.x-headSize*tangent.x,head.y-headSize*normal.y-headSize*tangent.y);
}
},
};
/*-------REGULARPOLYGON.JS--------*/
var RegularPolygon = function (center, radius, sides,angleOffset) {
this.init(center,radius,sides,angleOffset);
}
RegularPolygon.prototype = {
points:[],
fillColor:null,
init:function (center,radius, sides,angleOffset) {
angleOffset= angleOffset||0;
sides= sides||3;
var theta = 2*Math.PI/sides;
this.points = [];
for(var i = 0;i<sides;i++)
{
var pt = new Point(
center.x+radius*Math.sin(angleOffset+i*theta),
center.y-radius*Math.cos(angleOffset+i*theta));
this.points.push(pt);
}
},
isInside:function isInside(p) {
//first, we generate a ray that enters from the left and passes through the polygon through the point in question. Then we count the number of intersections
//- if it's odd, it's inside
//- if it's even, it's outside.
//generate the ray origin
var rayOrigin = new Point(p.x-1000,p.y+10);
for(var i =0 ;i<this.points.length;i++)
{
var pI = this.points[(i+this.points.length+0)%this.points.length];
var pN = this.points[(i+this.points.length+1)%this.points.length];
var rN = pI.subtract(pN).normalize();
var r2 = rayOrigin.subtract(p);
var ii = Util.intersect(rayOrigin, r2, pI,rN);
if(ii)
{
g.beginPath();
g.fillStyle = "rgba(255,255,255,0.5)";
g.arc(ii.point.x,ii.point.y, 4,0,7);
g.fill();
}
}
},
draw:function(g) {
g.beginPath();
if(this.fillColor) g.fillStyle = this.fillColor;
if(this.strokeStyle) g.strokeStyle = this.strokeStyle;
if(this.lineWidth) g.lineWidth = this.lineWidth;
g.moveTo(this.points[0].x,this.points[0].y);
for(var i =0 ;i<this.points.length;i++)
{
g.lineTo(this.points[i].x,this.points[i].y);
}
g.lineTo(this.points[0].x,this.points[0].y);
if(this.fillColor) {
// console.log("finishing?");
g.fill();
}
if(this.strokeStyle) g.stroke();
},
drawRounded:function(radius,g,offset) {
// radius =1;
if(this.lineWidth!=null) g.lineWidth = this.lineWidth;
if(this.fillColor) g.fillStyle = this.fillColor;
if(this.strokeStyle) g.strokeStyle = this.strokeStyle;
g.beginPath();
var polyPoints = [];
//we need to be able to shift the points in and out...
var pts = this.points;
var newPts = [];
var p = this.points;
g.beginPath();
//----PATH OFFSET
for(var i =0;i<this.points.length;i++)
{
//TODO resolve this to compensate for acute angles! There needs to be a feature of this that includes the sin of the angle, or maybe 1/sin, since offsets have to be pushed out further if we're working on mitre offsets.
var pI = p[i];
var pL = p[(i+p.length-1)%p.length];
var pN = p[(i+p.length+1)%p.length];
var rL = pL.subtract(pI).normalize();//.add(pI);
var rN = pN.subtract(pI).normalize();//.add(pI);
var nL = rL.getNormal();
var nN = rN.getNormal();
var thisAngle = rL.angle()-rN.angle();
var concave = (thisAngle>0||Math.abs(thisAngle)>Math.PI);
var thisOffset = offset/Math.sin(thisAngle);
var avgN = new Point().lerp(rL,rN,0.5);
avgN.scaleBy(concave?thisOffset:thisOffset);
newPts.push(pI.subtract(avgN));
// lt(pI.subtract(avgN),g);
}
// lt(newPts[0],g);
// g.stroke();
pts = newPts;
//CORNER ROUNDING
for(var i =0;i<pts.length;i++)
// for(var i =0;i<;i++)
{
var pI = pts[i];
var pL = pts[(i+pts.length-1)%pts.length];
var pN = pts[(i+pts.length+1)%pts.length];
var rL = pL.subtract(pI).normalize();//.add(pI);
var rN = pN.subtract(pI).normalize();//.add(pI);
var thisAngle = rL.angle()-rN.angle();
var concave = (thisAngle>0||Math.abs(thisAngle)>Math.PI);
if(thisAngle>Math.PI&&thisAngle<Math.PI*2) concave = false;
var sign = concave?1:-1;
var theta = thisAngle/1;
var radiusI = Math.max(1,radius+offset*sign);
var radInset = (radiusI/Math.sin(theta));
//next, the relative points:
g.fillStyle ="white";
//so we have the inset, which is where to cast back from.
// g.fillText(radInset.toFixed(2),pI.x,pI.y+20);
// g.fillText((thisAngle*57).toFixed(1)+", "+ concave,pI.x,pI.y+30);
var avgN = new Point().lerp(rL,rN,0.5);
avgN.scaleBy(concave?radInset:-radInset);
// g.beginPath();
// mt(pI,g);
// lt(pI.add(avgN),g);
// g.stroke();
// rL.scaleBy(radiusI);
// rN.scaleBy(radiusI);
var nL = rL.getNormal();
var nN = rN.getNormal();
nL.scaleBy(radiusI/2*sign);
nN.scaleBy(radiusI/2*sign);
rL = rL.add(pI);
var insetPoint = pI.add(avgN);
var oldStroke = g.strokeStyle;
// g.strokeStyle = "red";
g.beginPath();
// g.arc(insetPoint.x,insetPoint.y,4,0,7);
g.stroke();
g.strokeStyle=oldStroke;
g.beginPath();
// g.arc(insetPoint.x,insetPoint.y,Math.abs(radiusI)/2,0,7);
g.stroke();
g.beginPath();
// g.arc(insetPoint.x,insetPoint.y,4,0,7);
g.stroke();
rL = insetPoint.add(nL);
rN = insetPoint.subtract(nN);
// g.beginPath();
// g.arc(rL.x,rL.y,2,0,7);
// g.stroke();
// g.beginPath();
// g.arc(rN.x,rN.y,2,0,7);
// g.stroke();
//then the two corners are actually radiusI*nL+insetPoint and radiusI*nR+insetPoint.
// var insetPoint = rL.add(rN);
//now maybe we can get the circle
// rN = rN.add(pI);
polyPoints.push(rL);
polyPoints.push(rN);
//then we need to cast that back to r from the
var rI = insetPoint;
// .subtract(pI);
// rI.normalize();
// rI.scaleBy(radius);
// rI = rI.add(pI);
// g.stroke();
// g.lineWidth = 1;
// g.fillStyle = "green";
// g.beginPath();
// g.arc(rN.x,rN.y,5,0,7);
// g.fill();
// g.fillStyle = "blue";
// g.beginPath();
// g.arc(rL.x,rL.y,5,0,7);
// g.fill();
// g.fillStyle = "black";
// g.beginPath();
// g.arc(insetPoint.x,insetPoint.y,5,0,7);
// g.fill();
var theta1 = Math.atan2(rN.y-insetPoint.y,rN.x-insetPoint.x);
var theta2 = Math.atan2(rL.y-insetPoint.y,rL.x-insetPoint.x);
//maybe we should try a quadraticcurveto...
// g.lineWidth = 1;
if(false&&(new Date().getTime()%2000)>1000)
{
g.moveTo(rL.x,rL.y);
// g.quadraticCurveTo(pI.x,pI.y,rN.x,rN.y);
} else
{
g.beginPath();
if(concave)
g.arc(rI.x,rI.y,radiusI/2,theta2,theta1);
else
g.arc(rI.x,rI.y,radiusI/2,theta1,theta2);
}
g.stroke();
//so that's good. we have the points and we have the radii we'll need to grab the points for:
}
g.lineWidth = this.lineWidth;
//---LINE SEGMENTS
g.beginPath();
if(polyPoints.length<1) return;
g.moveTo(polyPoints[0].x,polyPoints[0].y);
for(var i =1 ;i<polyPoints.length-1;i+=2)
{
g.moveTo(polyPoints[i].x,polyPoints[i].y);
g.lineTo(polyPoints[i+1].x,polyPoints[i+1].y);
}
g.moveTo(polyPoints[polyPoints.length-1].x,polyPoints[polyPoints.length-1].y);
g.lineTo(polyPoints[0].x,polyPoints[0].y);
if(this.fillColor) {
g.fill();
}
if(this.strokeStyle) g.stroke();
},
end:null,
}
var c = document.createElement("canvas");
document.body.appendChild(c);
var g = c.getContext("2d");
c.width = window.innerWidth;
function update() {
c.height = window.innerHeight;
var count = c.width/17;
for(var y = 0;y<43;y++) {
for(var i =0 ;i<count;i++){
var even = (i+y)%2==0;
var rpI = new RegularPolygon(new Point(50+17*i,30*y+(even?200:190)-200), 20.2, 3,even?0:Math.PI);
rpI.fillColor = "rgba(0,0,0,"+(i/count+0.1*(0.5+0.45*Math.sin(y/323.62*i/5*new Date().getTime()*0.01)))+")";
rpI.draw(g);
}
}
requestAnimationFrame(update);
}
update();
Also see: Tab Triggers