cssAudio - Activefile-genericCSS - ActiveGeneric - ActiveHTML - ActiveImage - ActiveJS - ActiveSVG - ActiveText - Activefile-genericVideo - ActiveLovehtmlicon-new-collectionicon-personicon-teamlog-outoctocatpop-outspinnerstartv

Pen Settings

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

Quick-add: + add another resource

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

Quick-add: + add another resource

Code Indentation

     

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

            
              .p-summary
  h1 GLSL Glitch
  p
    a(href="https://ykob.github.io/sketch-threejs/sketch/glitch.html", target="_blank")
      |this source.

canvas(id="canvas-webgl", class="p-canvas-webgl")
            
          
!
            
              @import url('https://fonts.googleapis.com/css?family=Homenaje');

.p-canvas-webgl {
  position: fixed;
  z-index: 1;
  top: 0; left: 0;
}

.p-summary {
  position: absolute;
  top: 20px; left: 20px;
  z-index: 2;
  color: #fff;
  font-family: 'Homenaje', sans-serif;
  h1 {
    margin: 0 0 0.2em;
    font-size: 42px;
    font-weight: 400;
    letter-spacing: 0.05em;
  }
  p {
    margin: 0;
    font-size: 1.1rem;
    letter-spacing: 0.1em;
  }
  a {
    color: #fff;
  }
}
            
          
!
            
              class BackgroundImage {
  constructor() {
    this.uniforms = {
      resolution: {
        type: 'v2',
        value: new THREE.Vector2(window.innerWidth, window.innerHeight),
      },
      imageResolution: {
        type: 'v2',
        value: new THREE.Vector2(2048, 1356),
      },
      texture: {
        type: 't',
        value: null,
      },
    };
    this.obj = null;
  }
  init(src, callback) {
    const loader = new THREE.TextureLoader();
    loader.crossOrigin = '*'; 
    loader.load(
      src, (tex) => {
      tex.magFilter = THREE.NearestFilter;
      tex.minFilter = THREE.NearestFilter;
      this.uniforms.texture.value = tex;
      this.obj = this.createObj();
      callback();
    });
  }
  createObj() {
    return new THREE.Mesh(
      new THREE.PlaneBufferGeometry(2, 2),
      new THREE.RawShaderMaterial({
        uniforms: this.uniforms,
        vertexShader: `attribute vec3 position;
          attribute vec2 uv;

          varying vec2 vUv;

          void main(void) {
            vUv = uv;
            gl_Position = vec4(position, 1.0);
          }
        `,
        fragmentShader: `precision highp float;

          uniform vec2 resolution;
          uniform vec2 imageResolution;
          uniform sampler2D texture;

          varying vec2 vUv;

          void main(void) {
            vec2 ratio = vec2(
                min((resolution.x / resolution.y) / (imageResolution.x / imageResolution.y), 1.0),
                min((resolution.y / resolution.x) / (imageResolution.y / imageResolution.x), 1.0)
              );

            vec2 uv = vec2(
                vUv.x * ratio.x + (1.0 - ratio.x) * 0.5,
                vUv.y * ratio.y + (1.0 - ratio.y) * 0.5
              );
            gl_FragColor = texture2D(texture, uv);
          }
        `,
      })
    );
  }
  resize() {
    this.uniforms.resolution.value.set(window.innerWidth, window.innerHeight);
  }
}

class PostEffect {
  constructor(texture) {
    this.uniforms = {
      time: {
        type: 'f',
        value: 0
      },
      resolution: {
        type: 'v2',
        value: new THREE.Vector2(window.innerWidth, window.innerHeight)
      },
      texture: {
        type: 't',
        value: texture,
      },
    };
    this.obj = this.createObj();
  }
  createObj() {
    return new THREE.Mesh(
      new THREE.PlaneBufferGeometry(2, 2),
      new THREE.RawShaderMaterial({
        uniforms: this.uniforms,
        vertexShader: `attribute vec3 position;
          attribute vec2 uv;
          
          varying vec2 vUv;
          
          void main() {
            vUv = uv;
            gl_Position = vec4(position, 1.0);
          }
        `,
        fragmentShader: `precision highp float;
        
          uniform float time;
          uniform vec2 resolution;
          uniform sampler2D texture;
          
          varying vec2 vUv;
          
          float random(vec2 c){
            return fract(sin(dot(c.xy ,vec2(12.9898,78.233))) * 43758.5453);
          }

          //
          // Description : Array and textureless GLSL 2D/3D/4D simplex
          //               noise functions.
          //      Author : Ian McEwan, Ashima Arts.
          //  Maintainer : ijm
          //     Lastmod : 20110822 (ijm)
          //     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
          //               Distributed under the MIT License. See LICENSE file.
          //               https://github.com/ashima/webgl-noise
          //

          vec3 mod289(vec3 x) {
            return x - floor(x * (1.0 / 289.0)) * 289.0;
          }

          vec4 mod289(vec4 x) {
            return x - floor(x * (1.0 / 289.0)) * 289.0;
          }

          vec4 permute(vec4 x) {
               return mod289(((x*34.0)+1.0)*x);
          }

          vec4 taylorInvSqrt(vec4 r)
          {
            return 1.79284291400159 - 0.85373472095314 * r;
          }

          float snoise3(vec3 v)
            {
            const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
            const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

          // First corner
            vec3 i  = floor(v + dot(v, C.yyy) );
            vec3 x0 =   v - i + dot(i, C.xxx) ;

          // Other corners
            vec3 g = step(x0.yzx, x0.xyz);
            vec3 l = 1.0 - g;
            vec3 i1 = min( g.xyz, l.zxy );
            vec3 i2 = max( g.xyz, l.zxy );

            //   x0 = x0 - 0.0 + 0.0 * C.xxx;
            //   x1 = x0 - i1  + 1.0 * C.xxx;
            //   x2 = x0 - i2  + 2.0 * C.xxx;
            //   x3 = x0 - 1.0 + 3.0 * C.xxx;
            vec3 x1 = x0 - i1 + C.xxx;
            vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
            vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

          // Permutations
            i = mod289(i);
            vec4 p = permute( permute( permute(
                       i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
                     + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
                     + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

          // Gradients: 7x7 points over a square, mapped onto an octahedron.
          // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
            float n_ = 0.142857142857; // 1.0/7.0
            vec3  ns = n_ * D.wyz - D.xzx;

            vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

            vec4 x_ = floor(j * ns.z);
            vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

            vec4 x = x_ *ns.x + ns.yyyy;
            vec4 y = y_ *ns.x + ns.yyyy;
            vec4 h = 1.0 - abs(x) - abs(y);

            vec4 b0 = vec4( x.xy, y.xy );
            vec4 b1 = vec4( x.zw, y.zw );

            //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
            //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
            vec4 s0 = floor(b0)*2.0 + 1.0;
            vec4 s1 = floor(b1)*2.0 + 1.0;
            vec4 sh = -step(h, vec4(0.0));

            vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
            vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

            vec3 p0 = vec3(a0.xy,h.x);
            vec3 p1 = vec3(a0.zw,h.y);
            vec3 p2 = vec3(a1.xy,h.z);
            vec3 p3 = vec3(a1.zw,h.w);

          //Normalise gradients
            vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
            p0 *= norm.x;
            p1 *= norm.y;
            p2 *= norm.z;
            p3 *= norm.w;

          // Mix final noise value
            vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
            m = m * m;
            return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                          dot(p2,x2), dot(p3,x3) ) );
            }
                    
          const float interval = 3.0;
          
          void main(void){
            float strength = smoothstep(interval * 0.5, interval, interval - mod(time, interval));
            vec2 shake = vec2(strength * 8.0 + 0.5) * vec2(
              random(vec2(time)) * 2.0 - 1.0,
              random(vec2(time * 2.0)) * 2.0 - 1.0
            ) / resolution;
          
            float y = vUv.y * resolution.y;
            float rgbWave = (
                snoise3(vec3(0.0, y * 0.01, time * 400.0)) * (2.0 + strength * 32.0)
                * snoise3(vec3(0.0, y * 0.02, time * 200.0)) * (1.0 + strength * 4.0)
                + step(0.9995, sin(y * 0.005 + time * 1.6)) * 12.0
                + step(0.9999, sin(y * 0.005 + time * 2.0)) * -18.0
              ) / resolution.x;
            float rgbDiff = (6.0 + sin(time * 500.0 + vUv.y * 40.0) * (20.0 * strength + 1.0)) / resolution.x;
            float rgbUvX = vUv.x + rgbWave;
            float r = texture2D(texture, vec2(rgbUvX + rgbDiff, vUv.y) + shake).r;
            float g = texture2D(texture, vec2(rgbUvX, vUv.y) + shake).g;
            float b = texture2D(texture, vec2(rgbUvX - rgbDiff, vUv.y) + shake).b;
          
            float whiteNoise = (random(vUv + mod(time, 10.0)) * 2.0 - 1.0) * (0.15 + strength * 0.15);
          
            float bnTime = floor(time * 20.0) * 200.0;
            float noiseX = step((snoise3(vec3(0.0, vUv.x * 3.0, bnTime)) + 1.0) / 2.0, 0.12 + strength * 0.3);
            float noiseY = step((snoise3(vec3(0.0, vUv.y * 3.0, bnTime)) + 1.0) / 2.0, 0.12 + strength * 0.3);
            float bnMask = noiseX * noiseY;
            float bnUvX = vUv.x + sin(bnTime) * 0.2 + rgbWave;
            float bnR = texture2D(texture, vec2(bnUvX + rgbDiff, vUv.y)).r * bnMask;
            float bnG = texture2D(texture, vec2(bnUvX, vUv.y)).g * bnMask;
            float bnB = texture2D(texture, vec2(bnUvX - rgbDiff, vUv.y)).b * bnMask;
            vec4 blockNoise = vec4(bnR, bnG, bnB, 1.0);
          
            float bnTime2 = floor(time * 25.0) * 300.0;
            float noiseX2 = step((snoise3(vec3(0.0, vUv.x * 2.0, bnTime2)) + 1.0) / 2.0, 0.12 + strength * 0.5);
            float noiseY2 = step((snoise3(vec3(0.0, vUv.y * 8.0, bnTime2)) + 1.0) / 2.0, 0.12 + strength * 0.3);
            float bnMask2 = noiseX2 * noiseY2;
            float bnR2 = texture2D(texture, vec2(bnUvX + rgbDiff, vUv.y)).r * bnMask2;
            float bnG2 = texture2D(texture, vec2(bnUvX, vUv.y)).g * bnMask2;
            float bnB2 = texture2D(texture, vec2(bnUvX - rgbDiff, vUv.y)).b * bnMask2;
            vec4 blockNoise2 = vec4(bnR2, bnG2, bnB2, 1.0);
          
            float waveNoise = (sin(vUv.y * 1200.0) + 1.0) / 2.0 * (0.15 + strength * 0.2);
          
            gl_FragColor = vec4(r, g, b, 1.0) * (1.0 - bnMask - bnMask2) + (whiteNoise + blockNoise + blockNoise2 - waveNoise);
          }
        `,
      })
    );
  }
  render(time) {
    this.uniforms.time.value += time;
  }
  resize() {
    this.uniforms.resolution.value.set(window.innerWidth, window.innerHeight);
  }
}

class ConsoleSignature {
  constructor() {
    this.message = `created by yoichi kobayashi`;
    this.url = `http://www.tplh.net`;
    this.show();
  }
  show() {
    if (navigator.userAgent.toLowerCase().indexOf('chrome') > -1) {
      const args = [
        `\n%c ${this.message} %c%c ${this.url} \n\n`,
        'color: #fff; background: #222; padding:3px 0;',
        'padding:3px 1px;',
        'color: #fff; background: #47c; padding:3px 0;',
      ];
      console.log.apply(console, args);
    } else if (window.console) {
      console.log(`${this.message} ${this.url}`);
    }
  }
}

const debounce = (callback, duration) => {
  var timer;
  return function(event) {
    clearTimeout(timer);
    timer = setTimeout(function(){
      callback(event);
    }, duration);
  };
};

const canvas = document.getElementById('canvas-webgl');
const renderer = new THREE.WebGLRenderer({
  antialias: false,
  canvas: canvas,
});
const renderBack1 = new THREE.WebGLRenderTarget(window.innerWidth, window.innerHeight);
const scene = new THREE.Scene();
const sceneBack = new THREE.Scene();
const camera = new THREE.OrthographicCamera(-1, 1, 1, -1, 0, 1);
const cameraBack = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 1, 10000);
const clock = new THREE.Clock();

//
// process for this sketch.
//

const bgImg = new BackgroundImage();
const postEffect = new PostEffect(renderBack1.texture);
const consoleSignature = new ConsoleSignature();

//
// common process
//
const resizeWindow = () => {
  canvas.width = window.innerWidth;
  canvas.height = window.innerHeight;
  cameraBack.aspect = window.innerWidth / window.innerHeight;
  cameraBack.updateProjectionMatrix();
  bgImg.resize();
  postEffect.resize();
  renderBack1.setSize(window.innerWidth, window.innerHeight);
  renderer.setSize(window.innerWidth, window.innerHeight);
}
const render = () => {
  const time = clock.getDelta();
  renderer.render(sceneBack, cameraBack, renderBack1);
  postEffect.render(time);
  renderer.render(scene, camera);
}
const renderLoop = () => {
  render();
  requestAnimationFrame(renderLoop);
}

const on = () => {
  window.addEventListener('resize', debounce(() => {
    resizeWindow();
  }), 1000);
}

const init = () => {
  renderer.setSize(window.innerWidth, window.innerHeight);
  renderer.setClearColor(0x111111, 1.0);
  cameraBack.position.set(0, 0, 100);
  cameraBack.lookAt(new THREE.Vector3());

  bgImg.init('http://www.tplh.net/file/osaka01.jpg', () => {
    sceneBack.add(bgImg.obj);
    scene.add(postEffect.obj);
  })

  on();
  resizeWindow();
  renderLoop();
}
init();

            
          
!
999px
Loading ..................

Console