HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div><canvas width="640" height="480" /></div>
<!--
WebGL CRT monitor effect loop. Uses offscreen 2D canvas as buffer source.
Libraries and sources:
- ReGL (WebGL helper): http://regl.party/
- glMatrix (math): http://glmatrix.net/
- onecolor (RGB conversion): https://github.com/One-com/one-color
- Google Fonts Inconsolata
-->
html, body {
margin: 0;
padding: 0;
height: 100%;
background: #000;
}
body {
min-height: 640px;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
background: radial-gradient(circle at 50% 30%, #fff, #444);
}
div {
padding: 10px 10px 20px;
border-radius: 40px;
box-shadow: 0 0 50px 50px #000;
background: #000;
}
const onecolor = one.color;
function hex2vector(cssHex) {
const pc = onecolor(cssHex);
return vec3.fromValues(
pc.red(),
pc.green(),
pc.blue()
);
}
const charW = 6;
const charH = 10;
const bufferCW = 80;
const bufferCH = 24;
const bufferW = bufferCW * charW;
const bufferH = bufferCH * charH;
const textureW = 512;
const textureH = 256;
const consolePad = 8; // in texels
const consoleW = bufferW + consolePad * 2;
const consoleH = bufferH + consolePad * 2;
const bufferCanvas = document.createElement('canvas');
bufferCanvas.width = bufferW;
bufferCanvas.height = bufferH;
// document.body.appendChild(bufferCanvas);
const bufferContext = bufferCanvas.getContext('2d');
bufferContext.fillStyle = '#000';
bufferContext.fillRect(0, 0, bufferW, bufferH);
function charRange(start, end) {
return Array.apply(null, new Array(end - start)).map((_, index) => {
return String.fromCharCode(start + index);
});
}
const characterSet = ([]
.concat(charRange(0x30, 0x3a)) // ASCII digits
.concat(charRange(0x40, 0x5b)) // ASCII uppercase and @
);
// pseudo-random
// credit: https://gist.github.com/blixt/f17b47c62508be59987b
const SEED_OFFSET = new Date().getTime();
function randomize(seed) {
const intSeed = seed % 2147483647;
const safeSeed = intSeed > 0 ? intSeed : intSeed + 2147483646;
return safeSeed * 16807 % 2147483647;
}
function getRandomizedFraction(seed) {
return (seed - 1) / 2147483646;
}
let cursorX = 0, cursorY = bufferCH - 1;
const chunkList = [ '-\n' ];
let chunkIndex = 0, chunkPos = 0;
fetch('https://cdnjs.cloudflare.com/ajax/libs/gl-matrix/2.7.1/gl-matrix.js').then(response => {
if (!response.ok) {
throw new Error('oops');
}
const reader = response.body.getReader();
const nextChunk = () => {
reader.read().then(({ done, value }) => {
if (done) {
return;
}
chunkList.push(new TextDecoder('utf-8').decode(value));
nextChunk();
});
};
nextChunk();
});
function updateWorld(delta) {
// redraw
bufferContext.textAlign = 'center';
bufferContext.font = '12px "Inconsolata"';
const advance = 2 + Math.floor(Math.random() * 10);
for (let i = 0; i < advance; i++) {
const chunk = chunkList[chunkIndex];
const char = chunk[chunkPos];
// advance read head
chunkPos += 1;
if (chunkPos >= chunk.length) {
chunkIndex = (chunkIndex + 1) % chunkList.length;
chunkPos = 0;
}
const charCode = char.charCodeAt(0);
if (charCode >= 32) {
bufferContext.fillStyle = `hsl(${160 + (charCode / 256) * 60}, 100%, 60%)`;
bufferContext.fillText(
char,
(cursorX + 0.5) * charW, // center inside character box
cursorY * charH + charH,
charW // restrict width, but allow a tiny bit of spillover
);
cursorX += 1;
}
if (charCode === 10 || cursorX >= bufferCW) {
cursorX = 0;
bufferContext.drawImage(
bufferCanvas,
0, charH, bufferW, bufferH - charH,
0, 0, bufferW, bufferH - charH
);
bufferContext.fillStyle = `#000`;
bufferContext.fillRect(0, bufferH - charH, bufferW, charH);
}
}
}
// "warm up" the state by simulating the world for a bit
Array.apply(null, new Array(100)).forEach(() => {
updateWorld(0.1);
});
// let fadeCountdown = 0;
function renderWorld(delta) {
// // fade screen every few frames
// // (not every frame, for long trails without rounding artifacts)
// fadeCountdown -= delta;
// if (fadeCountdown < 0) {
// bufferContext.fillStyle = 'rgba(0, 0, 0, 0.5)';
// bufferContext.fillRect(0, 0, bufferW, bufferH);
// fadeCountdown += 0.2;
// }
// trails.forEach((trail, index) => {
// const k = index / trails.length;
// const charX = Math.floor(trail[0]);
// // randomize based on character position
// const charSeed = index + (charX + trail[1] * bufferCW) * 50;
// const outSeed = randomize(charSeed * 1500 + SEED_OFFSET);
// const char = characterSet[Math.floor(getRandomizedFraction(outSeed) * characterSet.length)];
// });
}
// init WebGL
const regl = createREGL({
canvas: document.body.querySelector('canvas'),
attributes: { antialias: true, alpha: false, preserveDrawingBuffer: true }
});
const spriteTexture = regl.texture({
width: textureW,
height: textureH,
mag: 'linear'
});
const termFgColor = hex2vector('#efe');
const termBgColor = hex2vector('#202520');
const quadCommand = regl({
vert: `
precision mediump float;
attribute vec3 position;
varying vec2 uvPosition;
void main() {
uvPosition = position.xy * vec2(0.5, -0.5) + vec2(0.5);
gl_Position = vec4(
vec2(-1.0, 1.0) + (position.xy - vec2(-1.0, 1.0)) * 1.0,
0.0,
1.0
);
}
`,
frag: `
precision mediump float;
varying vec2 uvPosition;
uniform sampler2D sprite;
uniform float time;
uniform float glitchLine;
uniform float glitchFlutter;
uniform float glitchAmount;
uniform float glitchDistance;
uniform vec3 bgColor;
uniform vec3 fgColor;
#define curvature 1.0
#define textureW ${textureW + '.0'}
#define textureH ${textureH + '.0'}
#define consoleW ${consoleW + '.0'}
#define consoleH ${consoleH + '.0'}
vec3 renderFacet(vec2 facetOrigin, vec2 facetSize, vec2 facetWH, vec2 facetTexelUV, float facetGlitchLine, vec2 textureLookupRatio) {
float facetH = facetWH.y;
// simulate 2x virtual pixel size, for crisp display on low-res
vec2 inTexel = mod(facetTexelUV * facetWH * 0.5, vec2(1.0));
float facetGlitchDistance = glitchDistance / facetSize.y;
float distToGlitch = facetGlitchLine - (facetTexelUV.y - inTexel.y / facetH);
float glitchOffsetLinear = step(0.0, distToGlitch) * max(0.0, facetGlitchDistance - distToGlitch) / facetGlitchDistance;
float glitchOffset = glitchOffsetLinear * glitchOffsetLinear;
facetTexelUV.x -= glitchOffset * glitchAmount + 0.081 * (glitchFlutter * glitchFlutter * glitchFlutter);
vec2 inTexelOffset = inTexel - 0.5;
vec2 uvAdjustment = inTexelOffset * vec2(0.0, .5 / facetH); // remove vertical texel interpolation
vec2 distortedUVPosition = facetOrigin + (facetTexelUV - uvAdjustment) * facetSize;
vec4 sourcePixel = texture2D(
sprite,
distortedUVPosition * textureLookupRatio
);
// multiply by source alpha as well
vec3 pixelRGB = sourcePixel.rgb * sourcePixel.a;
float scanlineAmount = inTexelOffset.y * inTexelOffset.y / 0.25;
float intensity = 12.0 - scanlineAmount * 3.0; // ray intensity is over-amped by default
vec3 glitchLineAmp = vec3(0.7, 0.15, 0.1) * glitchOffset * 20.0;
return mix(
bgColor,
fgColor,
intensity * pixelRGB
) * (1.0 - 0.5 * scanlineAmount) + glitchLineAmp;
}
void main() {
// @todo use uniform
vec2 consoleWH = vec2(consoleW, consoleH);
float maxMixFactor = 8.0;
float mixFactor = max(0.0, mod(time * 0.5, maxMixFactor + 2.0) - 2.0);
float globalLoopMix = (mixFactor / maxMixFactor);
globalLoopMix *= globalLoopMix; // slow at first
//float mixFactor = maxMixFactor - abs(mod(time * 0.5, maxMixFactor * 2.0) - maxMixFactor);
vec2 textureLookupRatio = consoleWH / vec2(textureW, textureH);
vec2 globalCenterOffset = uvPosition - vec2(0.5);
float globalDistortionFactor = dot(globalCenterOffset, globalCenterOffset) * curvature * globalLoopMix;
vec2 globalTexelUV = uvPosition + globalCenterOffset * (1.0 - globalDistortionFactor) * globalDistortionFactor; // pixel position in parent-relative UV
vec2 fromGlobalEdge = vec2(0.5) - abs(globalTexelUV - vec2(0.5));
vec2 parentOrigin = vec2(0); // parent origin in global UV
vec2 parentSize = vec2(1.0); // parent size in global UV
vec2 parentWH = consoleWH; // parent size in texels
vec2 parentUV = globalTexelUV; // pixel position in parent-relative UV
float parentEdgeSize = 0.1;
int maxLevels = int(mixFactor);
for(int level = 0; level < 7; level++) {
if (level >= maxLevels) {
break;
}
parentSize *= 0.5;
parentOrigin += floor(parentUV / 0.5) * parentSize;
parentUV = mod(parentUV, 0.5) / 0.5;
parentWH *= 0.5;
parentEdgeSize *= 1.75; // tighten up edge feathering
mixFactor -= 1.0;
}
vec2 parentCenterOffset = parentUV - vec2(0.5);
float parentDistortionFactor = dot(parentCenterOffset, parentCenterOffset) * curvature;
vec2 parentTexelUV = parentUV + parentCenterOffset * (1.0 - parentDistortionFactor) * parentDistortionFactor; // intended texture coordinates inside parent UV
vec2 facetOriginInParent = floor(parentUV / 0.5) * 0.5;
vec2 facetOrigin = parentOrigin + parentSize * facetOriginInParent; // facet origin in global UV
vec2 facetWH = parentWH * 0.5; // facet size in texels
vec2 facetUV = (parentUV - facetOriginInParent) / vec2(0.5); // pixel position inside facet
vec2 facetCenterOffset = facetUV - vec2(0.5);
float facetDistortionFactor = dot(facetCenterOffset, facetCenterOffset) * curvature;
vec2 facetTexelUV = facetUV + facetCenterOffset * (1.0 - facetDistortionFactor) * facetDistortionFactor; // intended texture coordinates inside facet UV
vec2 parentFacetTexelUV = (parentTexelUV - facetOriginInParent) / 0.5; // parent texture coordinates inside facet UV
float edgeFadeMixFactor = (clamp(mixFactor, 0.8, 0.95) - 0.8) / 0.15;
float distortionMixFactor = (max(mixFactor, 0.95) - 0.95) / 0.05;
// blended target texture coordinates inside facet UV
vec2 blendedTexelUV = mix(parentFacetTexelUV, facetTexelUV, distortionMixFactor);
vec2 fromFacetEdge = vec2(0.5) - abs(blendedTexelUV - vec2(0.5)); // use blended position
vec2 fromParentEdge = vec2(0.5) - abs(parentTexelUV - vec2(0.5));
if (fromFacetEdge.x > 0.0 && fromFacetEdge.y > 0.0 && fromGlobalEdge.x > 0.0 && fromGlobalEdge.y > 0.0) {
vec2 fromParentEdgePixel = min(parentEdgeSize * parentWH * fromParentEdge, vec2(1.0, 1.0));
vec2 fromEdgePixel = min(parentEdgeSize * facetWH * fromFacetEdge, vec2(1.0, 1.0));
vec2 fromGlobalEdgePixel = min(0.1 * consoleWH * fromGlobalEdge, vec2(1.0, 1.0));
// fade faster near the parent's center
float distanceAmount = 4.0 * dot(parentCenterOffset, parentCenterOffset);
float edgeMixCurve = 2.0 * edgeFadeMixFactor * (1.0 - edgeFadeMixFactor);
float edgeFade = mix(
fromParentEdgePixel.x * fromParentEdgePixel.y,
fromEdgePixel.x * fromEdgePixel.y,
edgeFadeMixFactor - distanceAmount * edgeMixCurve
);
float loopedEdgeFade = edgeFade * mix(
1.0,
fromGlobalEdgePixel.x * fromGlobalEdgePixel.y,
globalLoopMix
);
float screenFade = mix(
1.0 - dot(parentCenterOffset, parentCenterOffset) * 1.8,
1.0 - dot(facetCenterOffset, facetCenterOffset) * 1.8,
edgeFadeMixFactor
);
float loopedScreenFade = screenFade * mix(
1.0,
1.0 - dot(globalCenterOffset, globalCenterOffset) * 1.8,
globalLoopMix
);
vec2 facetSize = parentSize * 0.5;
float facetGlitchLine = (glitchLine - facetOrigin.y) / facetSize.y;
gl_FragColor = vec4(
loopedEdgeFade * loopedScreenFade * renderFacet(
facetOrigin,
facetSize,
facetWH,
blendedTexelUV,
facetGlitchLine,
textureLookupRatio
),
0.2
);
} else {
gl_FragColor = vec4(0.0, 0.0, 0.0, 1.0);
}
}
`,
attributes: {
position: regl.buffer([
[ -1, -1, 0 ],
[ 1, -1, 0 ],
[ -1, 1, 0 ],
[ 1, 1, 0 ]
])
},
uniforms: {
time: regl.context('time'),
glitchLine: regl.prop('glitchLine'),
glitchFlutter: regl.prop('glitchFlutter'),
glitchAmount: regl.prop('glitchAmount'),
glitchDistance: regl.prop('glitchDistance'),
camera: regl.prop('camera'),
sprite: spriteTexture,
bgColor: regl.prop('bgColor'),
fgColor: regl.prop('fgColor')
},
primitive: 'triangle strip',
count: 4,
depth: {
enable: false
},
blend: {
enable: true,
func: {
src: 'src alpha',
dst: 'one minus src alpha'
}
}
});
regl.clear({
depth: 1,
color: [ 0, 0, 0, 1 ]
});
// main loop
let currentTime = performance.now();
let elapsedTime = 0;
function rafBody() {
// measure time
const newTime = performance.now();
const delta = Math.min(0.05, (newTime - currentTime) / 1000); // apply limiter to avoid frame skips
currentTime = newTime;
elapsedTime += delta;
// glitch settings
const glitchLine = (0.8 + elapsedTime * 0.27) % 1.0;
const glitchFlutter = (elapsedTime * 40.0) % 1.0; // timed to be slightly out of sync from main frame rate
const glitchAmount = 0.06 + glitchFlutter * 0.01;
const glitchDistance = 0.04 + glitchFlutter * 0.35;
updateWorld(delta);
renderWorld(delta);
regl.poll();
spriteTexture.subimage(bufferContext, consolePad, consolePad);
quadCommand({
bgColor: termBgColor,
fgColor: termFgColor,
glitchLine,
glitchFlutter,
glitchAmount,
glitchDistance
});
requestAnimationFrame(rafBody);
}
// kickstart the loop
rafBody();
Also see: Tab Triggers