HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
#loading
.circle
#container
.box
h1 Lavos
p Hello, I'm here to destroy the Earth!
html, body
height: 100%;
width: 100%;
body
font-size: 62.5%;
background: #000;
overflow: hidden;
color: #FFF;
font-family: serif;
overscroll-behavior: none;
#loading
background: black;
position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
z-index: 9999;
display: flex;
justify-content: center;
align-items: center;
visibility: visible;
opacity: 1;
transition: visibility 1.6s, opacity 1.6s;
.circle
width: 50px;
height: 50px;
background: white;
border-radius: 50%;
opacity: 0;
transform: scale(0, 0);
animation: circle-animation 1.6s ease-in-out 0s infinite normal none;
#loading.loaded
visibility: hidden;
opacity: 0;
#container
width: 100%;
height: 100%;
.box
color: white;
font-size: 4.8rem;
position: fixed;
z-index: 1;
top: 50%;
left: 10%;
transform: translateY(-50%);
overflow: hidden;
h1
padding-bottom: 0.8rem;
p
font-size: 0.8rem;
/** css animation */
@keyframes circle-animation
0%
opacity: 0;
transform: scale(0, 0);
50%
opacity: 1;
transform: scale(1, 1);
/**
* GPGPU Particles
* Referred to
* https://www.youtube.com/watch?v=oLH00MXTqNg
* https://qiita.com/uma6661/items/20accc9b5fb9845fc73a
* https://wgld.org/d/webgl/w083.html
* Thank you so much.
*/
import * as THREE from 'https://cdn.jsdelivr.net/npm/[email protected]/build/three.module.js';
import { OrbitControls } from 'https://cdn.jsdelivr.net/npm/[email protected]/examples/jsm/controls/OrbitControls.js';
/** vertex shader source */
const vertexShader = `
attribute vec2 reference;
uniform float uTime;
uniform bool uPressed;
uniform sampler2D texturePosition;
varying vec3 vPosition;
varying vec3 vNormal;
varying vec2 vUv;
float PI = 3.14159265359;
void main(){
vec3 pos = texture2D(texturePosition, reference).xyz;
float dist = length(pos);
// Referred to https://t.co/9RSKLLVOrB?amp=1
float shrink = 2.0 / PI * atan(sin(PI * 2.0 * (uTime * 0.3 - dist * 0.9) * (1.0 / 4.0)) / 0.1);
float scale = 1.0 + shrink * 0.9;
pos *= scale;
vPosition = pos;
vUv = reference;
vec4 mvPosition = modelViewMatrix * vec4(pos, 1.0);
gl_PointSize = 2.0 * (4.0 / - mvPosition.z);
gl_Position = projectionMatrix * mvPosition;
}
`;
/** fragment shader source */
const fragmentShader = `
uniform float uTime;
varying vec3 vPosition;
// Simplex 3D Noise
// by Ian McEwan, Ashima Arts
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float snoise(vec3 v){
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min( g.xyz, l.zxy );
vec3 i2 = max( g.xyz, l.zxy );
// x0 = x0 - 0. + 0.0 * C
vec3 x1 = x0 - i1 + 1.0 * C.xxx;
vec3 x2 = x0 - i2 + 2.0 * C.xxx;
vec3 x3 = x0 - 1. + 3.0 * C.xxx;
// Permutations
i = mod(i, 289.0 );
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients
// ( N*N points uniformly over a square, mapped onto an octahedron.)
float n_ = 1.0/7.0; // N=7
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z *ns.z); // mod(p,N*N)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
const float scale = 0.1;
void main () {
/**
* square to circle
* Referred to
* https://qiita.com/uma6661/items/20accc9b5fb9845fc73a
* Thank you so much.
*/
//float f = length(gl_PointCoord - vec2(0.5, 0.5));
//if (f > 0.1) discard;
vec3 color;
color.r = abs(snoise(vec3(vPosition.x * scale, vPosition.y * scale, uTime * 0.1)));
color.g = abs(snoise(vec3(vPosition.x * scale, vPosition.y * scale, uTime * 0.2)));
color.b = abs(snoise(vec3(vPosition.x * scale, vPosition.y * scale, uTime * 0.3)));
gl_FragColor = vec4(color, 1.0);
}
`;
/** fragment simulation */
const positionSimulation = `
uniform float uTime;
uniform float uScale;
// Simplex 4D Noise
// by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}
vec4 grad4(float j, vec4 ip){
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
float snoise(vec4 v){
const vec2 C = vec2( 0.138196601125010504, // (5 - sqrt(5))/20 G4
0.309016994374947451); // (sqrt(5) - 1)/4 F4
// First corner
vec4 i = floor(v + dot(v, C.yyyy) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C
vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;
// Permutations
i = mod(i, 289.0);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
const float scale = 0.05;
float PI = 3.14159265359;
void main () {
vec2 uv = gl_FragCoord.xy / resolution.xy;
vec4 tmpPos = texture2D(texturePosition, uv);
vec4 tmpVel = texture2D(textureVelocity, uv);
vec4 pos = tmpPos.xyzw;
vec4 vel = tmpVel.xyzw;
float noisyX = snoise(vec4(pos.x * uScale, pos.y / uScale, pos.z / uScale, uTime));
float noisyY = snoise(vec4(pos.x / uScale, pos.y * uScale, pos.z / uScale, uTime));
float noisyZ = snoise(vec4(pos.x / uScale, pos.y / uScale, pos.z * uScale, uTime));
pos.x += (noisyX + tmpVel.x) * scale;
pos.y += (noisyY + tmpVel.y) * scale;
pos.z += (noisyZ + tmpVel.z) * scale;
if (length(pos.xyz) > 5.0) {
pos.x = 0.0;
pos.y = 0.0;
pos.z = 0.0;
}
gl_FragColor = pos;
}
`;
const velocitySimulation = `
void main() {
vec2 uv = gl_FragCoord.xy / resolution.xy;
//float idParticle = uv.y * resolution.x + uv.x;
vec4 tmpVel = texture2D(textureVelocity, uv);
vec4 tmpPos = texture2D(texturePosition, uv);
vec4 pos = tmpPos.xyzw;
vec4 vel = tmpVel.xyzw;
gl_FragColor = vel;
}
`;
/**
* class Sketch
*/
class Sketch {
constructor() {
this.renderer =
new THREE.WebGLRenderer({
antialias: true,
alpha: true
});
document.getElementById('container').appendChild(this.renderer.domElement);
//this.statsInit();
this.init();
}
statsInit() {
this.stats = new Stats();
this.stats.setMode(0);
this.stats.domElement.style.position = 'absolute';
this.stats.domElement.style.left = '0';
this.stats.domElement.style.top = '0';
document.getElementById('container').appendChild(this.stats.domElement);
}
init() {
/** time */
this.time = new THREE.Clock(true);
/** mouse */
this.amp = 0.0001;
this.mouse = new THREE.Vector2();
this.touchStart = new THREE.Vector2();
this.touchMove = new THREE.Vector2();
this.touchEnd = new THREE.Vector2();
this.pressed = false;
/** canvas size */
this.width = window.innerWidth;
this.height = window.innerHeight;
/** scene */
this.scene = new THREE.Scene();
/** setup and render */
this.setupCanvas();
this.setupCamera();
//this.setupLight();
this.setupShape();
this.setupEvents();
this.render();
}
setupCanvas() {
/** renderer */
this.renderer.setSize(this.width, this.height);
//this.renderer.setPixelRatio(window.devicePixelRatio);
/** Because it's so heavy. */
this.renderer.setPixelRatio(0.75);
this.renderer.setClearColor(0x000000, 1.0);
/** style */
this.renderer.domElement.style.position = 'fixed';
this.renderer.domElement.style.top = '0';
this.renderer.domElement.style.left = '0';
this.renderer.domElement.style.zIndex = '0';
this.renderer.domElement.style.outline = 'none';
}
setupCamera() {
const fov = 70;
const fovRadian = (fov / 2) * (Math.PI / 180);
this.dist = this.height / 2 / Math.tan(fovRadian);
this.camera =
new THREE.PerspectiveCamera(
fov,
this.width / this.height,
0.01,
1000
);
this.camera.position.set(0, 0, 5);
this.camera.lookAt(new THREE.Vector3());
this.scene.add(this.camera);
//this.controls = new OrbitControls(this.camera, this.renderer.domElement);
}
setupLight() {
/** directinal light */
this.directionalLight = new THREE.DirectionalLight(0xffffff);
this.scene.add(this.directionalLight);
/** point light */
this.spotLight = new THREE.SpotLight(0xffffff);
this.spotLight.position.set(0, 300, 0);
this.scene.add(this.spotLight);
}
setupShape() {
this.shapes = new Array();
const s = new Shape(this);
this.shapes.push(s);
}
setupGui() {
this.settings = {
scale: 3,
};
this.gui = new dat.GUI();
this.gui.add(this.settings, 'scale', 1, 10, 1).onChange(() => this.init());
}
render() {
//this.stats.begin(); // -------------------- //
const time = this.time.getElapsedTime();
/** camera */
this.camera.position.set(
Math.cos(-time * 0.1) * 5,
Math.cos(time * 0.1) * 5,
Math.sin(-time * 0.1) * 5
);
this.camera.lookAt(new THREE.Vector3());
/** shapes */
for (let i = 0; i < this.shapes.length; i++) {
this.shapes[i].update(time);
}
this.renderer.render(this.scene, this.camera);
//this.stats.end(); // -------------------- //
this.animationId = requestAnimationFrame(this.render.bind(this));
}
setupEvents() {
window.addEventListener('resize', this.onResize.bind(this), false);
window.addEventListener('mousemove', this.onMousemove.bind(this), false);
this.renderer.domElement.addEventListener('wheel', this.onWheel.bind(this), false);
this.renderer.domElement.addEventListener('touchstart', this.onTouchstart.bind(this), false);
this.renderer.domElement.addEventListener('touchmove', this.onTouchmove.bind(this), false);
this.renderer.domElement.addEventListener('touchend', this.onTouchend.bind(this), false);
this.renderer.domElement.addEventListener('mousedown', () => {
this.pressed = true;
});
this.renderer.domElement.addEventListener('mouseup', () => {
this.pressed = false;
});
}
onResize() {
const id = this.animationId;
cancelAnimationFrame(id);
this.init();
}
onMousemove(event) {
this.mouse.x = ( event.clientX / window.innerWidth ) * 2 - 1;
this.mouse.y = - ( event.clientY / window.innerHeight ) * 2 + 1;
}
onWheel(event) {
this.amp -= event.deltaY * 0.001;
}
onTouchstart(event) {
const touch = event.targetTouches[0];
this.touchStart.x = touch.pageX;
this.touchStart.y = touch.pageY;
}
onTouchmove(event) {
const touch = event.targetTouches[0];
this.touchMove.x = touch.pageX;
this.touchMove.y = touch.pageY;
this.touchEnd.x = this.touchStart.x - this.touchMove.x;
this.touchEnd.y = this.touchStart.y - this.touchMove.y;
this.amp -= this.touchEnd.y * 0.001;
this.mouse.x = event.clientX;
this.mouse.y = event.clientY;
}
onTouchend(event) {
this.touchStart.x = null;
this.touchStart.y = null;
this.touchMove.x = null;
this.touchMove.y = null;
this.touchEnd.x = null;
this.touchEnd.y = null;
this.mouse.x = null;
this.mouse.y = null;
}
}
/**
* shape class
*/
class Shape {
/**
* @constructor
* @param {object} sketch - canvas
*/
constructor(sketch) {
this.sketch = sketch;
this.init();
}
/**
* initialize shape
*/
init() {
this.initGPGPU();
this.geometry = new THREE.BufferGeometry();
this.material = new THREE.ShaderMaterial({
side: THREE.DoubleSide,
uniforms: {
uTime: {type: 'f', value: 0},
uPressed: {value: this.sketch.pressed},
texturePosition: {type: 'v4', value: null},
textureVelocity: {type: 'v4', value: null},
},
blending: THREE.AdditiveBlending,
transparent: true,
vertexShader: vertexShader,
fragmentShader: fragmentShader
});
this.num = this.sketch.width < 500 ? 500 : 500;
let positions = new Float32Array(this.num * this.num * 3);
let reference = new Float32Array(this.num * this.num * 2);
for (let i = 0; i < this.num * this.num; i++) {
positions.set([0, 0, 0], i * 3);
}
for (let j = 0; j < this.num; j++) {
for (let i = 0; i < this.num; i++) {
const index = j * this.num + i;
reference.set([i / this.num, j / this.num], index * 2);
}
}
this.geometry.setAttribute('position', new THREE.BufferAttribute(positions, 3));
this.geometry.setAttribute('reference', new THREE.BufferAttribute(reference, 2));
this.mesh = new THREE.Points(this.geometry, this.material);
this.sketch.scene.add(this.mesh);
}
initGPGPU() {
this.gpuCompute = new GPUComputationRenderer(this.sketch.width, this.sketch.height, this.sketch.renderer);
this.dataTexturePosition = this.gpuCompute.createTexture();
this.dataTextureVelocity = this.gpuCompute.createTexture();
this.setPositions(this.dataTexturePosition);
this.setVelocities(this.dataTextureVelocity);
this.positionVariable = this.gpuCompute.addVariable('texturePosition', positionSimulation, this.dataTexturePosition);
this.velocityVariable = this.gpuCompute.addVariable('textureVelocity', velocitySimulation, this.dataTextureVelocity);
/** It does not work without these codes. */
this.gpuCompute.setVariableDependencies( this.velocityVariable, [ this.positionVariable, this.velocityVariable ] );
this.gpuCompute.setVariableDependencies( this.positionVariable, [ this.positionVariable, this.velocityVariable ] );
this.positionVariable.material.uniforms['uTime'] = {type: 'f', value: 0};
this.positionVariable.material.uniforms['uScale'] = {type: 'f', value: 0.001};
this.gpuCompute.init();
}
setVelocities(texture) {
const arr = texture.image.data;
for (let i = 0; i < arr.length; i += 4) {
const r = Math.PI * 2 * Math.random();
const rand = Math.random();
arr[i + 0] = Math.cos(r) * rand;
arr[i + 1] = Math.sin(r) * rand;
arr[i + 2] = Math.sin(Math.PI * 2 * Math.random()) * Math.random();
arr[i + 3] = 0.0;
}
}
setPositions(texture) {
const arr = texture.image.data;
for (let i = 0; i < arr.length; i += 4) {
const r = Math.random();
const x = 0.0;
const y = 0.0;
arr[i + 0] = 0.0;
arr[i + 1] = 0.0;
arr[i + 2] = 0.0;
arr[i + 3] = r;
}
}
/**
* update shape
* @param {number} time - time
*/
update(time) {
this.gpuCompute.compute();
this.material.uniforms.texturePosition.value =
this.gpuCompute.getCurrentRenderTarget(this.positionVariable).texture;
this.material.uniforms.textureVelocity.value =
this.gpuCompute.getCurrentRenderTarget(this.velocityVariable).texture;
this.mesh.material.uniforms.uTime.value = time;
this.mesh.material.uniforms.uPressed.value = this.sketch.pressed;
// does not pass time to positionVariable
this.positionVariable.material.uniforms.uTime.value = time;
this.positionVariable.material.uniforms.uScale.value = (time * 0.3 + 0.0001) % 15.0;
}
}
/**
* GPGPU
* This code from https://github.com/mrdoob/three.js/blob/342946c8392639028da439b6dc0597e58209c696/examples/js/misc/GPUComputationRenderer.js
*/
class GPUComputationRenderer {
constructor( sizeX, sizeY, renderer ) {
this.variables = [];
this.currentTextureIndex = 0;
let dataType = THREE.FloatType;
const scene = new THREE.Scene();
const camera = new THREE.Camera();
camera.position.z = 1;
const passThruUniforms = {
passThruTexture: {
value: null
}
};
const passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
const mesh = new THREE.Mesh( new THREE.PlaneGeometry( 2, 2 ), passThruShader );
scene.add( mesh );
this.setDataType = function ( type ) {
dataType = type;
return this;
};
this.addVariable = function ( variableName, computeFragmentShader, initialValueTexture ) {
const material = this.createShaderMaterial( computeFragmentShader );
const variable = {
name: variableName,
initialValueTexture: initialValueTexture,
material: material,
dependencies: null,
renderTargets: [],
wrapS: null,
wrapT: null,
minFilter: THREE.NearestFilter,
magFilter: THREE.NearestFilter
};
this.variables.push( variable );
return variable;
};
this.setVariableDependencies = function ( variable, dependencies ) {
variable.dependencies = dependencies;
};
this.init = function () {
if ( renderer.capabilities.isWebGL2 === false && renderer.extensions.has( 'OES_texture_float' ) === false ) {
return 'No OES_texture_float support for float textures.';
}
if ( renderer.capabilities.maxVertexTextures === 0 ) {
return 'No support for vertex shader textures.';
}
for ( let i = 0; i < this.variables.length; i ++ ) {
const variable = this.variables[ i ]; // Creates rendertargets and initialize them with input texture
variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] ); // Adds dependencies uniforms to the THREE.ShaderMaterial
const material = variable.material;
const uniforms = material.uniforms;
if ( variable.dependencies !== null ) {
for ( let d = 0; d < variable.dependencies.length; d ++ ) {
const depVar = variable.dependencies[ d ];
if ( depVar.name !== variable.name ) {
// Checks if variable exists
let found = false;
for ( let j = 0; j < this.variables.length; j ++ ) {
if ( depVar.name === this.variables[ j ].name ) {
found = true;
break;
}
}
if ( ! found ) {
return 'Variable dependency not found. Variable=' + variable.name + ', dependency=' + depVar.name;
}
}
uniforms[ depVar.name ] = {
value: null
};
material.fragmentShader = '\nuniform sampler2D ' + depVar.name + ';\n' + material.fragmentShader;
}
}
}
this.currentTextureIndex = 0;
return null;
};
this.compute = function () {
const currentTextureIndex = this.currentTextureIndex;
const nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
for ( let i = 0, il = this.variables.length; i < il; i ++ ) {
const variable = this.variables[ i ]; // Sets texture dependencies uniforms
if ( variable.dependencies !== null ) {
const uniforms = variable.material.uniforms;
for ( let d = 0, dl = variable.dependencies.length; d < dl; d ++ ) {
const depVar = variable.dependencies[ d ];
uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
}
} // Performs the computation for this variable
this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
}
this.currentTextureIndex = nextTextureIndex;
};
this.getCurrentRenderTarget = function ( variable ) {
return variable.renderTargets[ this.currentTextureIndex ];
};
this.getAlternateRenderTarget = function ( variable ) {
return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
};
function addResolutionDefine( materialShader ) {
materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + ' )';
}
this.addResolutionDefine = addResolutionDefine; // The following functions can be used to compute things manually
function createShaderMaterial( computeFragmentShader, uniforms ) {
uniforms = uniforms || {};
const material = new THREE.ShaderMaterial( {
uniforms: uniforms,
vertexShader: getPassThroughVertexShader(),
fragmentShader: computeFragmentShader
} );
addResolutionDefine( material );
return material;
}
this.createShaderMaterial = createShaderMaterial;
this.createRenderTarget = function ( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
sizeXTexture = sizeXTexture || sizeX;
sizeYTexture = sizeYTexture || sizeY;
wrapS = wrapS || THREE.ClampToEdgeWrapping;
wrapT = wrapT || THREE.ClampToEdgeWrapping;
minFilter = minFilter || THREE.NearestFilter;
magFilter = magFilter || THREE.NearestFilter;
const renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
wrapS: wrapS,
wrapT: wrapT,
minFilter: minFilter,
magFilter: magFilter,
format: THREE.RGBAFormat,
type: dataType,
depthBuffer: false
} );
return renderTarget;
};
this.createTexture = function () {
const data = new Float32Array( sizeX * sizeY * 4 );
return new THREE.DataTexture( data, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
};
this.renderTexture = function ( input, output ) {
// Takes a texture, and render out in rendertarget
// input = Texture
// output = RenderTarget
passThruUniforms.passThruTexture.value = input;
this.doRenderTarget( passThruShader, output );
passThruUniforms.passThruTexture.value = null;
};
this.doRenderTarget = function ( material, output ) {
const currentRenderTarget = renderer.getRenderTarget();
mesh.material = material;
renderer.setRenderTarget( output );
renderer.render( scene, camera );
mesh.material = passThruShader;
renderer.setRenderTarget( currentRenderTarget );
}; // Shaders
function getPassThroughVertexShader() {
return 'void main() {\n' + '\n' + ' gl_Position = vec4( position, 1.0 );\n' + '\n' + '}\n';
}
function getPassThroughFragmentShader() {
return 'uniform sampler2D passThruTexture;\n' + '\n' + 'void main() {\n' + '\n' + ' vec2 uv = gl_FragCoord.xy / resolution.xy;\n' + '\n' + ' gl_FragColor = texture2D( passThruTexture, uv );\n' + '\n' + '}\n';
}
}
}
(() => {
window.addEventListener('load', () => {
console.clear();
const loading = document.getElementById('loading');
loading.classList.add('loaded');
new Sketch();
});
})();
Also see: Tab Triggers