HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<html>
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Three.js - Chase and Escape</title>
<style>
body { margin: 0; overflow: hidden;}
</style>
</head>
<body id="body">
<div id="WebGL-output"></div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/90/three.min.js"></script>
</body>
</html>
class DustParticles {
constructor(num = 10) {
this.num = num;
this.wrap = new THREE.Object3D();
for (let i = 0; i < this.num; i++) {
const size = getRandomNum(800, 100);
const geometory = new THREE.BoxGeometry(size, size, size);
const color = 0xFFA133;
const material = new THREE.MeshLambertMaterial({
opacity: 1.0,
wireframe: false,
transparent: true,
color: color
});
const mesh = new THREE.Mesh(geometory, material);
const radius = getRandomNum(13000, 7000);
const theta = THREE.Math.degToRad(getRandomNum(180));
const phi = THREE.Math.degToRad(getRandomNum(360));
mesh.position.x = Math.sin(theta) * Math.cos(phi) * radius;
mesh.position.y = Math.sin(theta) * Math.sin(phi) * radius;
mesh.position.z = Math.cos(theta) * radius;
mesh.rotation.x = getRandomNum(360);
mesh.rotation.y = getRandomNum(360);
mesh.rotation.z = getRandomNum(360);
this.wrap.add(mesh);
}
}
}
class BoxContainer {
constructor(width = 100, height = 100, depth = 100, color = 0xffffff) {
const geometry = new THREE.BoxGeometry(width, height, depth, 10, 10, 10);
const material = new THREE.MeshLambertMaterial({
color: color,
opacity: 1.0,
wireframe: true,
depthWrite: false,
visible: false
});
this.mesh = new THREE.Mesh(geometry, material);
}
}
class Bellwether {
constructor() {
const geometry = new THREE.CylinderGeometry(1, 30, 50, 12);
geometry.rotateX(THREE.Math.degToRad(90));
const color = new THREE.Color(0xff0000);
const material = new THREE.MeshLambertMaterial({
color: color,
visible: false
});
this.mesh = new THREE.Mesh(geometry, material);
const radius = getRandomNum(1000, 200);
const theta = THREE.Math.degToRad(getRandomNum(180));
const phi = THREE.Math.degToRad(getRandomNum(360));
this.mesh.position.x = Math.sin(theta) * Math.cos(phi) * radius;
this.mesh.position.y = Math.sin(theta) * Math.sin(phi) * radius;
this.mesh.position.z = Math.cos(theta) * radius;
this.velocity = new THREE.Vector3();
this.acceleration = new THREE.Vector3();
this.timeX = getRandomNum(10, 0) * 0.1;
this.timeY = getRandomNum(10, 0) * 0.1;
this.timeZ = getRandomNum(10, 0) * 0.1;
this.maxSpeed = 45;
this.separateMaxSpeed = 30;
this.separateMaxForce = 30;
}
applyForce(f) {
this.acceleration.add(f.clone());
}
update() {
const maxSpeed = this.maxSpeed;
// update velocity
this.velocity.add(this.acceleration);
// limit velocity
if (this.velocity.length() > maxSpeed) {
this.velocity.clampLength(0, maxSpeed);
}
// update position
this.mesh.position.add(this.velocity);
// reset acc
this.acceleration.multiplyScalar(0);
// head
const head = this.velocity.clone();
head.multiplyScalar(10);
head.add(this.mesh.position);
this.mesh.lookAt(head);
}
randomWalk () {
const acc = new THREE.Vector3();
this.timeX += this.getRandAddTime();
this.timeY += this.getRandAddTime();
this.timeZ += this.getRandAddTime();
acc.x = Math.cos(this.timeX) * 10;
acc.y = Math.sin(this.timeY) * 10;
acc.z = Math.sin(this.timeZ) * 10;
acc.normalize();
acc.multiplyScalar(2);
this.applyForce(acc);
}
spiralWalk() {
this.timeX += 0.12;
this.timeY += 0.012;
this.timeZ += 0.0135;
let baseRadius = 200;
let acc = new THREE.Vector3();
let theta1 = Math.cos(this.timeY);
let theta2 = Math.sin(this.timeY);
let radius1 = baseRadius * theta1;
let radius2 = baseRadius * theta2;
acc.x = Math.cos(this.timeX) * radius1 + (Math.cos(this.timeZ) * baseRadius);
acc.y = Math.cos(this.timeX) * radius2 + (Math.sin(this.timeZ) * baseRadius);
acc.z = Math.sin(this.timeX) * baseRadius;
this.applyForce(acc);
}
getRandAddTime() {
let randNum = getRandomNum(100, 0);
let time = 0;
if (randNum > 90) {
time = getRandomNum(100, 0) * 0.01;
if (getRandomNum(10) > 5) {
time *= -1;
}
}
return time;
}
getAvoidVector(wall = new THREE.Vector3()) {
this.mesh.geometry.computeBoundingSphere();
const boundingSphere = this.mesh.geometry.boundingSphere;
const toMeVector = new THREE.Vector3();
toMeVector.subVectors(this.mesh.position, wall);
const distance = toMeVector.length() - boundingSphere.radius * 2;
const steerVector = toMeVector.clone();
steerVector.normalize();
steerVector.multiplyScalar(1 / (Math.pow(distance, 2)));
return steerVector;
}
avoidBoxContainer(rangeWidth = 80, rangeHeight = 80, rangeDepth = 80) {
const sumVector = new THREE.Vector3();
sumVector.add(this.getAvoidVector(new THREE.Vector3(rangeWidth, this.mesh.position.y, this.mesh.position.z)));
sumVector.add(this.getAvoidVector(new THREE.Vector3(-rangeWidth, this.mesh.position.y, this.mesh.position.z)));
sumVector.add(this.getAvoidVector(new THREE.Vector3(this.mesh.position.x, rangeHeight, this.mesh.position.z)));
sumVector.add(this.getAvoidVector(new THREE.Vector3(this.mesh.position.x, -rangeHeight, this.mesh.position.z)));
sumVector.add(this.getAvoidVector(new THREE.Vector3(this.mesh.position.x, this.mesh.position.y, rangeDepth)));
sumVector.add(this.getAvoidVector(new THREE.Vector3(this.mesh.position.x, this.mesh.position.y, -rangeDepth)));
sumVector.multiplyScalar(Math.pow(this.velocity.length(), 4));
return sumVector;
}
avoidDust(dusts) {
const sumVector = new THREE.Vector3();
let cnt = 0;
const maxSpeed = this.separateMaxSpeed;
const maxForce = this.separateMaxForce;
const steerVector = new THREE.Vector3();
dusts.forEach((dust) => {
const effectiveRange = dust.geometry.boundingSphere.radius + 600;
const dist = this.mesh.position.distanceTo(dust.position);
if (dist > 0 && dist < effectiveRange) {
let toMeVector = new THREE.Vector3();
toMeVector.subVectors(this.mesh.position, dust.position);
toMeVector.normalize();
toMeVector.divideScalar(Math.pow(dist, 4));
sumVector.add(toMeVector);
cnt++;
}
});
if (cnt > 0) {
sumVector.divideScalar(cnt);
sumVector.normalize();
sumVector.multiplyScalar(maxSpeed);
steerVector.subVectors(sumVector, this.velocity);
// limit force
if (steerVector.length() > maxForce) {
steerVector.clampLength(0, maxForce);
}
}
return steerVector;
}
}
class Escaper {
constructor() {
const geometry = new THREE.CylinderGeometry(1, 24, 60, 12);
geometry.rotateX(THREE.Math.degToRad(90));
//const color = new THREE.Color(`hsl(${getRandomNum(360)}, 100%, 50%)`);
const color = new THREE.Color(0x93deff);
const material = new THREE.MeshLambertMaterial({
wireframe: false,
color: color
});
this.mesh = new THREE.Mesh(geometry, material);
const radius = getRandomNum(100);
const theta = THREE.Math.degToRad(getRandomNum(180));
const phi = THREE.Math.degToRad(getRandomNum(360));
this.mesh.position.x = Math.sin(theta) * Math.cos(phi) * radius;
this.mesh.position.y = Math.sin(theta) * Math.sin(phi) * radius;
this.mesh.position.z = Math.cos(theta) * radius;
this.velocity = new THREE.Vector3();
this.acceleration = new THREE.Vector3();
this.maxSpeed = 40;
this.seekMaxSpeed = 40;
this.seekMaxForce = 1.0;
}
applyForce(f) {
this.acceleration.add(f.clone());
}
update() {
const maxSpeed = this.maxSpeed;
// update velocity
this.velocity.add(this.acceleration);
// limit velocity
if (this.velocity.length() > maxSpeed) {
this.velocity.clampLength(0, maxSpeed);
}
// update position
this.mesh.position.add(this.velocity);
// reset acc
this.acceleration.multiplyScalar(0);
// head
const head = this.velocity.clone();
head.multiplyScalar(10);
head.add(this.mesh.position);
this.mesh.lookAt(head);
}
seek(target = new THREE.Vector3()) {
const maxSpeed = this.seekMaxSpeed;
const maxForce = this.seekMaxForce;
const toGoalVector = new THREE.Vector3();
toGoalVector.subVectors(target, this.mesh.position);
const distance = toGoalVector.length();
toGoalVector.normalize();
toGoalVector.multiplyScalar(maxSpeed);
const steerVector = new THREE.Vector3();
steerVector.subVectors(toGoalVector, this.velocity);
// limit force
if (steerVector.length() > maxForce) {
steerVector.clampLength(0, maxForce);
}
return steerVector;
}
}
class Chaser {
constructor() {
const geometry = new THREE.CylinderGeometry(1, 10, 50, 12);
geometry.rotateX(THREE.Math.degToRad(90));
const color = new THREE.Color(`hsl(${getRandomNum(360)}, ${0}%, ${getRandomNum(100, 15)}%)`);
const material = new THREE.MeshLambertMaterial({
wireframe: false,
color: color
});
this.mesh = new THREE.Mesh(geometry, material);
const radius = 1000;
const theta = THREE.Math.degToRad(getRandomNum(180));
const phi = THREE.Math.degToRad(getRandomNum(360));
this.mesh.position.x = Math.sin(theta) * Math.cos(phi) * radius;
this.mesh.position.y = Math.sin(theta) * Math.sin(phi) * radius;
this.mesh.position.z = Math.cos(theta) * radius;
this.velocity = new THREE.Vector3();
this.acceleration = new THREE.Vector3();
this.maxSpeed = 50;
this.seekMaxSpeed = getRandomNum(50, 35);
this.seekMaxForce = getRandomNum(20, 10) * 0.1;
this.separateMaxSpeed = getRandomNum(120, 100);
this.separateMaxForce = getRandomNum(70, 30) * 0.1;
}
applyForce(f) {
this.acceleration.add(f.clone());
}
update() {
const maxSpeed = this.maxSpeed;
// update velocity
this.velocity.add(this.acceleration);
// limit velocity
if (this.velocity.length() > maxSpeed) {
this.velocity.clampLength(0, maxSpeed);
}
// update position
this.mesh.position.add(this.velocity);
// reset acc
this.acceleration.multiplyScalar(0);
// head
const head = this.velocity.clone();
head.multiplyScalar(10);
head.add(this.mesh.position);
this.mesh.lookAt(head);
}
seek(target = new THREE.Vector3()) {
const maxSpeed = this.seekMaxSpeed;
const maxForce = this.seekMaxForce;
const toGoalVector = new THREE.Vector3();
toGoalVector.subVectors(target, this.mesh.position);
toGoalVector.normalize();
toGoalVector.multiplyScalar(maxSpeed);
const steerVector = new THREE.Vector3();
steerVector.subVectors(toGoalVector, this.velocity);
// limit force
if (steerVector.length() > maxForce) {
steerVector.clampLength(0, maxForce);
}
return steerVector;
}
separate(creatures) {
const sumVector = new THREE.Vector3();
let cnt = 0;
const maxSpeed = this.separateMaxSpeed;
const maxForce = this.separateMaxForce;
const effectiveRange = 30;
const steerVector = new THREE.Vector3();
creatures.forEach((creature) => {
const dist = this.mesh.position.distanceTo(creature.mesh.position);
if (dist > 0 && dist < effectiveRange) {
let toMeVector = new THREE.Vector3();
toMeVector.subVectors(this.mesh.position, creature.mesh.position);
toMeVector.normalize();
toMeVector.divideScalar(Math.pow(dist, 2));
sumVector.add(toMeVector);
cnt++;
}
});
if (cnt > 0) {
sumVector.divideScalar(cnt);
sumVector.normalize();
sumVector.multiplyScalar(maxSpeed);
steerVector.subVectors(sumVector, this.velocity);
// limit force
if (steerVector.length() > maxForce) {
steerVector.clampLength(0, maxForce);
}
}
return steerVector;
}
}
class ChaseCamera {
constructor() {
this.camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 20000);
const radius = getRandomNum(2000);
const theta = THREE.Math.degToRad(getRandomNum(180));
const phi = THREE.Math.degToRad(getRandomNum(360));
this.camera.position.x = Math.sin(theta) * Math.cos(phi) * radius;
this.camera.position.y = Math.sin(theta) * Math.sin(phi) * radius;
this.camera.position.z = Math.cos(theta) * radius;
this.velocity = new THREE.Vector3();
this.acceleration = new THREE.Vector3();
this.maxSpeed = 40;
this.seekMaxSpeed = 40;
this.seekMaxForce = 4.0;
this.time = getRandomNum(50) * 0.1;
this.cameraWorkType = null;
this.cameraDistanceMax = 2500;
this.cameraDistanceMin = 200;
this.cameraDistance = getRandomNum(this.cameraDistanceMax);
}
applyForce(f) {
this.acceleration.add(f.clone());
}
update() {
const maxSpeed = this.maxSpeed;
// update velocity
this.velocity.add(this.acceleration);
// limit velocity
if (this.velocity.length() > maxSpeed) {
this.velocity.clampLength(0, maxSpeed);
}
// update position
this.camera.position.add(this.velocity);
// reset acc
this.acceleration.multiplyScalar(0);
}
seek(target = new THREE.Vector3()) {
const maxSpeed = this.seekMaxSpeed;
const maxForce = this.seekMaxForce;
const toGoalVector = new THREE.Vector3();
toGoalVector.subVectors(target, this.camera.position);
const distance = toGoalVector.length();
toGoalVector.normalize();
toGoalVector.multiplyScalar(maxSpeed);
const steerVector = new THREE.Vector3();
steerVector.subVectors(toGoalVector, this.velocity);
// limit force
if (steerVector.length() > maxForce) {
steerVector.clampLength(0, maxForce);
}
return steerVector;
}
lookingZoomInOut(target, type) {
if (type !== this.cameraWorkType) this.cameraWorkType = 'zoomInOut';
const targetPos = target.mesh.position.clone();
this.time += 0.01;
this.time -= this.cameraDistance * 0.0000023;
this.cameraDistance = this.cameraDistanceMax * Math.abs(Math.pow(Math.sin(this.time), 10)) + this.cameraDistanceMin;
this.camera.position.x = targetPos.x;
this.camera.position.y = targetPos.y;
this.camera.position.z = targetPos.z + this.cameraDistance;
}
lookingAsChase(target, type) {
const cameraTarget = new THREE.Vector3();
const offsetTargetPos = target.velocity.clone();
const escaperPos = target.mesh.position.clone();
if (type === 'front') {
offsetTargetPos.multiplyScalar(15);
cameraTarget.addVectors(target.mesh.position, offsetTargetPos);
this.setChasePosition(type, cameraTarget);
} else if (type === 'back') {
offsetTargetPos.multiplyScalar(-20);
cameraTarget.addVectors(target.mesh.position, offsetTargetPos);
this.setChasePosition(type, cameraTarget);
}
const seek = this.seek(cameraTarget);
this.applyForce(seek);
}
setChasePosition(type, cameraTarget) {
if (type !== this.cameraWorkType) {
this.cameraWorkType = type;
this.camera.position.set(cameraTarget.x, cameraTarget.y, cameraTarget.z);
this.velocity = new THREE.Vector3();
}
}
}
const gui = new dat.GUI();
const guiControls = new function () {
this.cameraWork = 'zoomInOut';
}
gui.add(guiControls, 'cameraWork', ['zoomInOut', 'front', 'back']).onChange((e) => {
currentCameraWork = e;
});
const colorPalette = {
screenBg: 0xf1f1f1,
ambientLight: 0x777777,
directionalLight: 0xffffff
}
const getRandomNum = (max = 0, min = 0) => Math.floor(Math.random() * (max + 1 - min)) + min;
const chasers = [];
let chaserGroup;
let offsetPhase = getRandomNum(100, 0);
currentCameraWork = 'zoomInOut';
const render = () => {
/* bellwether
------------------------------------ */
bellwether.randomWalk();
// avoid wall
bellwether.applyForce(bellwether.avoidBoxContainer(
boxContainer.mesh.geometry.parameters.width / 2,
boxContainer.mesh.geometry.parameters.height / 2,
boxContainer.mesh.geometry.parameters.depth / 2
));
// avoid dust
bellwether.applyForce(bellwether.avoidDust(dustParticles.wrap.children));
//bellwether.spiralWalk();
bellwether.update();
/* escaper
------------------------------------ */
const steer = escaper.seek(bellwether.mesh.position);
escaper.applyForce(steer);
escaper.update();
/* chasers
------------------------------------ */
const offsetTarget1 = escaper.velocity.clone();
const target = new THREE.Vector3();
offsetTarget1.normalize();
offsetPhase += 0.01;
const offsetDistance = 200 * Math.abs(Math.sin(offsetPhase)) + 100;
//let offsetDistance = 200;
offsetTarget1.multiplyScalar(offsetDistance);
target.subVectors(escaper.mesh.position, offsetTarget1);
chasers.forEach((chaser) => {
let seek = chaser.seek(target);
chaser.applyForce(seek);
let separate1 = chaser.separate(chasers);
chaser.applyForce(separate1);
chaser.update();
});
/* camera
------------------------------------ */
if (currentCameraWork === 'zoomInOut') {
chaseCamera.lookingZoomInOut(escaper, currentCameraWork);
} else {
chaseCamera.lookingAsChase(escaper, currentCameraWork);
chaseCamera.update();
}
chaseCamera.camera.lookAt(escaper.mesh.position);
/* renderer
------------------------------------ */
renderer.render(scene, chaseCamera.camera);
requestAnimationFrame(render);
}
const onResize = () => {
const width = window.innerWidth;
const height = window.innerHeight;
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setSize(width, height);
chaseCamera.camera.aspect = width / height;
chaseCamera.camera.updateProjectionMatrix();
}
/* scene
-------------------------------------------------------------*/
const scene = new THREE.Scene();
scene.fog = new THREE.Fog(colorPalette.screenBg, 1200, 20000);
/* box for border
-------------------------------------------------------------*/
const boxContainer = new BoxContainer(20000, 20000, 20000);
scene.add(boxContainer.mesh);
/* bellwether
-------------------------------------------------------------*/
const bellwether = new Bellwether();
scene.add(bellwether.mesh);
/* escaper
-------------------------------------------------------------*/
const escaper = new Escaper();
escaper.mesh.geometry.computeBoundingSphere();
scene.add(escaper.mesh);
/* chaser
-------------------------------------------------------------*/
chaserGroup = new THREE.Group();
for (let i = 0; i < 300; i++) {
const chaser = new Chaser();
chaser.mesh.geometry.computeBoundingSphere();
chasers.push(chaser);
chaserGroup.add(chaser.mesh);
}
scene.add(chaserGroup);
/* dustParticles
-------------------------------------------------------------*/
const dustParticles = new DustParticles(150);
dustParticles.wrap.children.forEach((dust) => {
dust.geometry.computeBoundingSphere();
})
scene.add(dustParticles.wrap);
/* camera
-------------------------------------------------------------*/
const chaseCamera = new ChaseCamera();
scene.add(chaseCamera.camera);
/* renderer
-------------------------------------------------------------*/
const renderer = new THREE.WebGLRenderer({ antialias: true });
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setClearColor(new THREE.Color(colorPalette.screenBg));
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.shadowMap.enabled = true;
/* AmbientLight
-------------------------------------------------------------*/
const ambientLight = new THREE.AmbientLight(colorPalette.ambientLight);
ambientLight.intensity = 1.0;
scene.add(ambientLight);
/* DirectionalLight
-------------------------------------------------------------*/
const directionalLight = new THREE.DirectionalLight(colorPalette.directionalLight, 1.0);
directionalLight.position.set( 20000, 20000, 2000);
scene.add( directionalLight );
/* resize
-------------------------------------------------------------*/
window.addEventListener('resize', onResize);
/* rendering start
-------------------------------------------------------------*/
document.getElementById('WebGL-output').appendChild(renderer.domElement);
render();
Also see: Tab Triggers