Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                  <section id="controls-wrapper">
    <label>Mass of Added Planet</label>
    <select id="masses-list">
      <option value="0.000003003">Earth</option>
      <option value="0.0009543">Jupiter</option>
      <option value="1">Sun</option>
      <option value="0.1">Red Dwarf Star</option>   
    </select>
    <button id="reset-button">Reset</button>
  </section>
  <canvas id="canvas"></canvas>
              
            
!

CSS

              
                    body {
      margin: 0;
      overflow: hidden;
      background: linear-gradient(to bottom, #cedce7 0%,#596a72 100%);      
      font-family: arial;
      font-size: 13px;
      font-weight: bold;
    }
    #controls-wrapper {
      position: absolute;
      z-index: 2;
      top: 0;
      width: 100%;
      padding: 10px;
    }
    #controls-wrapper > select, button {
      background-color: #000;
      color: #fff;
      border: 1px solid #545454;
    }
              
            
!

JS

              
                  /*
   * Gravitational n-body algorithm 
  */

  class nBodyProblem {
    constructor(params) {
      this.g = params.g;
      this.dt = params.dt;
      this.softeningConstant = params.softeningConstant;
  
      this.masses = params.masses;
    }
  
    updatePositionVectors() {
      const massesLen = this.masses.length;
  
      for (let i = 0; i < massesLen; i++) {
        const massI = this.masses[i];
  
        massI.x += massI.vx * this.dt;
        massI.y += massI.vy * this.dt;
        massI.z += massI.vz * this.dt;
      }
  
      return this;
    }
  
    updateVelocityVectors() {
      const massesLen = this.masses.length;
  
      for (let i = 0; i < massesLen; i++) {
        const massI = this.masses[i];
  
        massI.vx += massI.ax * this.dt;
        massI.vy += massI.ay * this.dt;
        massI.vz += massI.az * this.dt;
      }
    }
  
    updateAccelerationVectors() {
      const massesLen = this.masses.length;
  
      for (let i = 0; i < massesLen; i++) {
        let ax = 0;
        let ay = 0;
        let az = 0;
  
        const massI = this.masses[i];
  
        for (let j = 0; j < massesLen; j++) {
          if (i !== j) {
            const massJ = this.masses[j];
  
            const dx = massJ.x - massI.x;
            const dy = massJ.y - massI.y;
            const dz = massJ.z - massI.z;
  
            const distSq = dx * dx + dy * dy + dz * dz;
  
            const f =
              (this.g * massJ.m) /
              (distSq * Math.sqrt(distSq + this.softeningConstant));
  
            ax += dx * f;
            ay += dy * f;
            az += dz * f;
          }
        }
  
        massI.ax = ax;
        massI.ay = ay;
        massI.az = az;
      }
  
      return this;
    }
  }
  
  /*
   * Inputs for our nBodyProblem
   */
  
  const g = 39.5;
  const dt = 0.008; //0.005 years is equal to 1.825 days
  const softeningConstant = 0.15;
  
  const masses = [{
      name: "Sun", //We use solar masses as the unit of mass, so the mass of the Sun is exactly 1
      m: 1,
      x: -1.50324727873647e-6,
      y: -3.93762725944737e-6,
      z: -4.86567877183925e-8,
      vx: 3.1669325898331e-5,
      vy: -6.85489559263319e-6,
      vz: -7.90076642683254e-7
    },
    {
      name: "Mercury",
      m: 1.65956463e-7,
      x: -0.346390408691506,
      y: -0.272465544507684,
      z: 0.00951633403684172,
      vx: 4.25144321778261,
      vy: -7.61778341043381,
      vz: -1.01249478093275
    },
    {
      name: "Venus",
      m: 2.44699613e-6,
      x: -0.168003526072526,
      y: 0.698844725464528,
      z: 0.0192761582256879,
      vx: -7.2077847105093,
      vy: -1.76778886124455,
      vz: 0.391700036358566
    },
    {
      name: "Earth",
      m: 3.0024584e-6,
      x: 0.648778995445634,
      y: 0.747796691108466,
      z: -3.22953591923124e-5,
      vx: -4.85085525059392,
      vy: 4.09601538682312,
      vz: -0.000258553333317722
    },
    {
      m: 3.213e-7,
      name: "Mars",
      x: -0.574871406752105,
      y: -1.395455041953879,
      z: -0.01515164037265145,
      vx: 4.9225288800471425,
      vy: -1.5065904473191791,
      vz: -0.1524041758922603
    }
  ];
  
  /*
   * Create an instance of the nBodyProblem with the inputs above
   * We clone the masses array by parsing a stringified version of it so that we can reset the simulator with a minimum amount of fuss
   */ 
  
  const innerSolarSystem = new nBodyProblem({
    g,
    dt,
    masses: JSON.parse(JSON.stringify(masses)),   
    softeningConstant
  });
  
  /*
   * Motion trails
   */
  
  class Manifestation {
    constructor(ctx, trailLength, radius) {
      this.ctx = ctx;
    
      this.trailLength = trailLength;
  
      this.radius = radius;
  
      this.positions = [];
    }
  
    storePosition(x, y) {
      this.positions.push({
        x,
        y
      });
  
      if (this.positions.length > this.trailLength) this.positions.shift();
    }
  
    draw(x, y) {
      this.storePosition(x, y);
  
      const positionsLen = this.positions.length;
  
      for (let i = 0; i < positionsLen; i++) {
        let transparency;
        let circleScaleFactor;
  
        const scaleFactor = i / positionsLen;
  
        if (i === positionsLen - 1) {
          transparency = 1;
          circleScaleFactor = 1;
        } else {
          transparency = scaleFactor / 2;      
          circleScaleFactor = scaleFactor;
        }
  
        this.ctx.beginPath();
        this.ctx.arc(
          this.positions[i].x,
          this.positions[i].y,
          circleScaleFactor * this.radius,
          0,
          2 * Math.PI
        );
        this.ctx.fillStyle = `rgb(0, 12, 153, ${transparency})`;
  
        this.ctx.fill();
      }
    }
  }
  
  /*
   * Get the canvas element and its context from the DOM
   */
  
  const canvas = document.querySelector("#canvas");
  const ctx = canvas.getContext("2d");
  
  /*
   * Full screen action
   */
  
  const width = (canvas.width = window.innerWidth);
  const height = (canvas.height = window.innerHeight);
  
  /*
   * Animation constants
   *
   * scale is the number of pixels per astronomical units
   *
   * radius is the radius of the circle that represents the current position of a mass
   *
   * trailLength is the number of previous positions that we should draw in the motion trail
   */
  
  const scale = 70;
  const radius = 4;
  const trailLength = 35;
  
  /*
   * Iterate over the masses being simulated and add a visual manifestation for each of them
   */
  
  const populateManifestations = masses => {
    masses.forEach(
      mass =>
      (mass["manifestation"] = new Manifestation(
        ctx,
        trailLength,
        radius
      ))
    );
  };
  
  populateManifestations(innerSolarSystem.masses);

  /*
   * Click the reset button to reset the simulation
  */

  document.querySelector('#reset-button').addEventListener('click', () => {
    innerSolarSystem.masses = JSON.parse(JSON.stringify(masses));
    populateManifestations(innerSolarSystem.masses);       
  }, false);
  
  /*
   * Code for adding masses with you mouse
   */
  
  //Step 1.
  
  let mousePressX = 0;
  let mousePressY = 0;
  
  //Step 2.
  
  let currentMouseX = 0;
  let currentMouseY = 0;
  
  //Step 3.
  
  let dragging = false;
  
  //Step 4.
  
  canvas.addEventListener(
    "mousedown",
    e => {
      mousePressX = e.clientX;
      mousePressY = e.clientY;
      dragging = true;
    },
    false
  );
  
  //Step 5
  
  canvas.addEventListener(
    "mousemove",
    e => {
      currentMouseX = e.clientX;
      currentMouseY = e.clientY;
    },
    false
  );
  
  //Step 6
  
  const massesList = document.querySelector("#masses-list");
  
  canvas.addEventListener(
    "mouseup",
    e => {
      const x = (mousePressX - width / 2) / scale;
      const y = (mousePressY - height / 2) / scale;
      const z = 0;
      const vx = (e.clientX - mousePressX) / 35;
      const vy = (e.clientY - mousePressY) / 35;
      const vz = 0;
  
      innerSolarSystem.masses.push({
        m: parseFloat(massesList.value),
        x,
        y,
        z,
        vx,
        vy,
        vz,
        manifestation: new Manifestation(ctx, trailLength, radius)
      });
  
      dragging = false;
    },
    false
  );
  
  /*
   * The animate function that sets everything in motion.
   * We run it 60 times a second with the help of requestAnimationFrame
   */
  
  const animate = () => {
    /*
     * Advance our simulation by one step
     */
  
    innerSolarSystem
      .updatePositionVectors()
      .updateAccelerationVectors()
      .updateVelocityVectors();
  
    /*
     * Clear the canvas in preparation for the next drawing cycle
     */
  
    ctx.clearRect(0, 0, width, height);
  
    const massesLen = innerSolarSystem.masses.length;
  
    /*
     * Let us draw some masses!
     */
  
    for (let i = 0; i < massesLen; i++) {
      const massI = innerSolarSystem.masses[i];
  
      /*
       * The origin (x = 0, y = 0) of the canvas coordinate system is in the top left corner
       * To prevent our simulation from being centered on the top left corner, include the x and y offsets
       * So that it is centered smack in the middle of the canvas
       */
  
      const x = width / 2 + massI.x * scale;
      const y = height / 2 + massI.y * scale;
  
      /*
       * Draw our motion trail
       */
  
      massI.manifestation.draw(x, y);
  
      /*
       * If the mass has a name, draw it onto the canvas next to the leading circle of the motion trail
       */
  
      if (massI.name) {
        ctx.font = "14px Arial";
        ctx.fillText(massI.name, x + 12, y + 4);
        ctx.fill();
      }
      
      /*
       * Stop masses from escaping the bounds of the viewport
       * If either condition is met, the velocity of the mass will be reversed
       * And the mass will bounce back into the inner solar system
       */
  
      if (x < radius || x > width - radius) massI.vx = -massI.vx;
  
      if (y < radius || y > height - radius) massI.vy = -massI.vy;
    }
  
    /*
     * Draw the line which indicates direction and velocity of a mass that is about to be added when the mouse is being dragged
     */
  
    if (dragging) {
      ctx.beginPath();
      ctx.moveTo(mousePressX, mousePressY);
      ctx.lineTo(currentMouseX, currentMouseY);
      ctx.strokeStyle = "red";
      ctx.stroke();
    }
  
    requestAnimationFrame(animate);
  };
  
  animate();
              
            
!
999px

Console