Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                e<!DOCTYPE html>
<html>
<head>
 <title>TetNet</title>
 <link href='https://fonts.googleapis.com/css?family=Inconsolata' rel='stylesheet' type='text/css'>
 <style>
   
</style>
<script src="lib/cerebrum.js"></script>
<script src="https://code.jquery.com/jquery-3.1.0.min.js" integrity="sha256-cCueBR6CsyA4/9szpPfrX3s49M9vUU5BgtiJj06wt/s="   crossorigin="anonymous"></script>
</head>
<body>
  <div id="output" class="text"></div>
  <div id="score" class="text"></div>
  <div id="instructions" class="text"><br /><b>[Key Commands]</b><br />Load Fully Evolved Archive: [CTRL]<br />Speed Up: [E]<br />Slow Down: [D]<br />Toggle AI: [A]<br />Move Shape: [Arrow Keys]<br />Rotate Shape: [Up Arrow]<br />Drop Shape: [Down Arrow]<br />Save State: [Q]<br />Load State: [W]<br />Get Archive: [G]<br />Load Archive: [R]<br />Pick Shape: [I,O,T,S,Z,J,L]</div>
  <div id="signature" class="text">Created By Idrees Hassan<br />Questions? Just ask!<br /><a href="mailto:&#105;&#100;&#114;&#101;&#101;&#115;&#064;&#105;&#100;&#114;&#101;&#101;&#115;&#105;&#110;&#099;&#046;&#099;&#111;&#109;" target="_top">&#105;&#100;&#114;&#101;&#101;&#115;&#064;&#105;&#100;&#114;&#101;&#101;&#115;&#105;&#110;&#099;&#046;&#099;&#111;&#109;</a></div>
  <script src="./tetnet.js"></script>
  <script>
    $(window).keydown(function (e){
      if (e.ctrlKey) {
        var archiveJSON = $.ajax({
          url: "./archive.json",
          async: false
        }).responseText;
        loadArchive(archiveJSON);
        alert("Archive loaded successfully!");
      }
    });
  </script>
  <script type="text/javascript">
  </script>
</body>
</html>
              
            
!

CSS

              
                body {
    background-color: #272821;
  }
  .text {
    color: #706C5A;
    font-family: Inconsolata, Courier, monospace;
    font-size: 20px;
  }
  #output {
    float: left;
    padding-left: 20%;
  }
  #score {
    padding-left: 55%;
  }
  #instructions {
    float: left;
    position: absolute;
    left: 1.5%;
    bottom: 3%;
    font-size: small;
    line-height: 110%;
  }
  #signature {
    float: right;
    position: absolute;
    right: 1.5%;
    bottom: 3%;
    font-size: small;
    line-height: 110%;
  }
  a:link {
    color: inherit;
  }
              
            
!

JS

              
                //Define 10x20 grid as the board
var grid = [
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
];

//Block shapes
var shapes = {
	I: [[0,0,0,0], [1,1,1,1], [0,0,0,0], [0,0,0,0]],
	J: [[2,0,0], [2,2,2], [0,0,0]],
	L: [[0,0,3], [3,3,3], [0,0,0]],
	O: [[4,4], [4,4]],
	S: [[0,5,5], [5,5,0], [0,0,0]],
	T: [[0,6,0], [6,6,6], [0,0,0]],
	Z: [[7,7,0], [0,7,7], [0,0,0]]
};

//Block colors
var colors = ["F92338", "C973FF", "1C76BC", "FEE356", "53D504", "36E0FF", "F8931D"];

//Used to help create a seeded generated random number for choosing shapes. makes results deterministic (reproducible) for debugging
var rndSeed = 1;

//BLOCK SHAPES
//coordinates and shape parameter of current block we can update
var currentShape = {x: 0, y: 0, shape: undefined};
//store shape of upcoming block
var upcomingShape;
//stores shapes
var bag = [];
//index for shapes in the bag
var bagIndex = 0;

//GAME VALUES
//Game score
var score = 0;
// game speed
var speed = 500;
// boolean for changing game speed
var changeSpeed = false;
//for storing current state, we can load later
var saveState;
//stores current game state
var roundState;
//list of available game speeds
var speeds = [500,100,1,0];
//inded in game speed array
var speedIndex = 0;
//turn ai on or off
var ai = true;
//drawing game vs updating algorithms
var draw = true;
//how many so far?
var movesTaken = 0;
//max number of moves allowed in a generation
var moveLimit = 500;
//consists of move the 7 move parameters
var moveAlgorithm = {};
//set to highest rate move 
var inspectMoveSelection = false;


//GENETIC ALGORITHM VALUES
//stores number of genomes, init at 50 
var populationSize = 50;
//stores genomes
var genomes = [];
//index of current genome in genomes array
var currentGenome = -1;
//generation number
var generation = 0;
//stores values for a generation
var archive = {
	populationSize: 0,
	currentGeneration: 0,
	elites: [],
	genomes: []
};
//rate of mutation
var mutationRate = 0.05;
//helps calculate mutation
var mutationStep = 0.2;


//main function, called on load
function initialize() {
	//init pop size
	archive.populationSize = populationSize;
	//get the next available shape from the bag
	nextShape();
	//applies the shape to the grid
	applyShape();
	//set both save state and current state from the game
	saveState = getState();
	roundState = getState();
	//create an initial population of genomes
	createInitialPopulation();
	//the game loop
	var loop = function(){
		//boolean for changing game speed
		if (changeSpeed) {
			//restart the clock
			//stop time
			clearInterval(interval);
			//set time, like a digital watch
			interval = setInterval(loop, speed);
			//and don't change it
			changeInterval = false;
		}
		if (speed === 0) {
			//no need to draw on screen elements
			draw = false;
			//updates the game (update fitness, make a move, evaluate next move)
			update();
			update();
			update();
		} else {
			//draw the elements
			draw = true;
		}
		//update regardless
		update();
		if (speed === 0) {
			//now draw elements
			draw = true;
			//now update the score
			updateScore();
		}
	};
	//timer interval
	var interval = setInterval(loop, speed);
}
document.onLoad = initialize();


//key options
window.onkeydown = function (event) {

	var characterPressed = String.fromCharCode(event.keyCode);
	if (event.keyCode == 38) {
		rotateShape();
	} else if (event.keyCode == 40) {
		moveDown();
	} else if (event.keyCode == 37) {
		moveLeft();
	} else if (event.keyCode == 39) {
		moveRight();
	} else if (shapes[characterPressed.toUpperCase()] !== undefined) {
		removeShape();
		currentShape.shape = shapes[characterPressed.toUpperCase()];
		applyShape();
	} else if (characterPressed.toUpperCase() == "Q") {
		saveState = getState();
	} else if (characterPressed.toUpperCase() == "W") {
		loadState(saveState);
	} else if (characterPressed.toUpperCase() == "D") {
		//slow down
		speedIndex--;
		if (speedIndex < 0) {
			speedIndex = speeds.length - 1;
		}
		speed = speeds[speedIndex];
		changeSpeed = true;
	} else if (characterPressed.toUpperCase() == "E") {
		//speed up
		speedIndex++;
		if (speedIndex >= speeds.length) {
			speedIndex = 0;
		}
		//adjust speed index
		speed = speeds[speedIndex];
		changeSpeed = true;
		//Turn on/off AI
	} else if (characterPressed.toUpperCase() == "A") {
		ai = !ai;
	} else if (characterPressed.toUpperCase() == "R") {
		//load saved generation values
		loadArchive(prompt("Insert archive:"));
	} else if (characterPressed.toUpperCase() == "G") {
		if (localStorage.getItem("archive") === null) {
			alert("No archive saved. Archives are saved after a generation has passed, and remain across sessions. Try again once a generation has passed");
		} else {
			prompt("Archive from last generation (including from last session):", localStorage.getItem("archive"));
		}
	} else if (characterPressed.toUpperCase() == "F") {
		//?
		inspectMoveSelection = !inspectMoveSelection;
	} else {
		return true;
	}
	//outputs game state to the screen (post key press)
	output();
	return false;
};

/**
 * Creates the initial population of genomes, each with random genes.
 */
 function createInitialPopulation() {
 	//inits the array
 	genomes = [];
 	//for a given population size
 	for (var i = 0; i < populationSize; i++) {
 		//randomly initialize the 7 values that make up a genome
 		//these are all weight values that are updated through evolution
 		var genome = {
 			//unique identifier for a genome
 			id: Math.random(),
 			//The weight of each row cleared by the given move. the more rows that are cleared, the more this weight increases
 			rowsCleared: Math.random() - 0.5,
 			//the absolute height of the highest column to the power of 1.5
 			//added so that the algorithm can be able to detect if the blocks are stacking too high
 			weightedHeight: Math.random() - 0.5,
 			//The sum of all the column’s heights
 			cumulativeHeight: Math.random() - 0.5,
 			//the highest column minus the lowest column
 			relativeHeight: Math.random() - 0.5,
 			//the sum of all the empty cells that have a block above them (basically, cells that are unable to be filled)
 			holes: Math.random() * 0.5,
 			// the sum of absolute differences between the height of each column 
 			//(for example, if all the shapes on the grid lie completely flat, then the roughness would equal 0).
 			roughness: Math.random() - 0.5,
 		};
 		//add them to the array
 		genomes.push(genome);
 	}
 	evaluateNextGenome();
 }

/**
 * Evaluates the next genome in the population. If there is none, evolves the population.
 */
 function evaluateNextGenome() {
 	//increment index in genome array
 	currentGenome++;
 	//If there is none, evolves the population.
 	if (currentGenome == genomes.length) {
 		evolve();
 	}
 	//load current gamestate
 	loadState(roundState);
 	//reset moves taken
 	movesTaken = 0;
 	//and make the next move
 	makeNextMove();
 }

/**
 * Evolves the entire population and goes to the next generation.
 */
 function evolve() {

 	console.log("Generation " + generation + " evaluated.");
 	//reset current genome for new generation
 	currentGenome = 0;
 	//increment generation
 	generation++;
 	//resets the game
 	reset();
 	//gets the current game state
 	roundState = getState();
 	//sorts genomes in decreasing order of fitness values
 	genomes.sort(function(a, b) {
 		return b.fitness - a.fitness;
 	});
 	//add a copy of the fittest genome to the elites list
 	archive.elites.push(clone(genomes[0]));
 	console.log("Elite's fitness: " + genomes[0].fitness);

 	//remove the tail end of genomes, focus on the fittest
 	while(genomes.length > populationSize / 2) {
 		genomes.pop();
 	}
 	//sum of the fitness for each genome
 	var totalFitness = 0;
 	for (var i = 0; i < genomes.length; i++) {
 		totalFitness += genomes[i].fitness;
 	}

 	//get a random index from genome array
	function getRandomGenome() {
		return genomes[randomWeightedNumBetween(0, genomes.length - 1)];
	}
	//create children array
	var children = [];
	//add the fittest genome to array
	children.push(clone(genomes[0]));
	//add population sized amount of children
	while (children.length < populationSize) {
		//crossover between two random genomes to make a child
		children.push(makeChild(getRandomGenome(), getRandomGenome()));
	}
	//create new genome array
	genomes = [];
	//to store all the children in
	genomes = genomes.concat(children);
	//store this in our archive
	archive.genomes = clone(genomes);
	//and set current gen
	archive.currentGeneration = clone(generation);
	console.log(JSON.stringify(archive));
	//store archive, thanks JS localstorage! (short term memory)
	localStorage.setItem("archive", JSON.stringify(archive));
}

/**
 * Creates a child genome from the given parent genomes, and then attempts to mutate the child genome.
 * @param  {Genome} mum The first parent genome.
 * @param  {Genome} dad The second parent genome.
 * @return {Genome}     The child genome.
 */
 function makeChild(mum, dad) {
 	//init the child given two genomes (its 7 parameters + initial fitness value)
 	var child = {
 		//unique id
 		id : Math.random(),
 		//all these params are randomly selected between the mom and dad genome
 		rowsCleared: randomChoice(mum.rowsCleared, dad.rowsCleared),
 		weightedHeight: randomChoice(mum.weightedHeight, dad.weightedHeight),
 		cumulativeHeight: randomChoice(mum.cumulativeHeight, dad.cumulativeHeight),
 		relativeHeight: randomChoice(mum.relativeHeight, dad.relativeHeight),
 		holes: randomChoice(mum.holes, dad.holes),
 		roughness: randomChoice(mum.roughness, dad.roughness),
 		//no fitness. yet.
 		fitness: -1
 	};
 	//mutation time!

 	//we mutate each parameter using our mutationstep
 	if (Math.random() < mutationRate) {
 		child.rowsCleared = child.rowsCleared + Math.random() * mutationStep * 2 - mutationStep;
 	}
 	if (Math.random() < mutationRate) {
 		child.weightedHeight = child.weightedHeight + Math.random() * mutationStep * 2 - mutationStep;
 	}
 	if (Math.random() < mutationRate) {
 		child.cumulativeHeight = child.cumulativeHeight + Math.random() * mutationStep * 2 - mutationStep;
 	}
 	if (Math.random() < mutationRate) {
 		child.relativeHeight = child.relativeHeight + Math.random() * mutationStep * 2 - mutationStep;
 	}
 	if (Math.random() < mutationRate) {
 		child.holes = child.holes + Math.random() * mutationStep * 2 - mutationStep;
 	}
 	if (Math.random() < mutationRate) {
 		child.roughness = child.roughness + Math.random() * mutationStep * 2 - mutationStep;
 	}
 	return child;
 }

/**
 * Returns an array of all the possible moves that could occur in the current state, rated by the parameters of the current genome.
 * @return {Array} An array of all the possible moves that could occur.
 */
 function getAllPossibleMoves() {
 	var lastState = getState();
 	var possibleMoves = [];
 	var possibleMoveRatings = [];
 	var iterations = 0;
 	//for each possible rotation
 	for (var rots = 0; rots < 4; rots++) {

 		var oldX = [];
 		//for each iteration
 		for (var t = -5; t <= 5; t++) {
 			iterations++;
 			loadState(lastState);
 			//rotate shape
 			for (var j = 0; j < rots; j++) {
 				rotateShape();
 			}
 			//move left
 			if (t < 0) {
 				for (var l = 0; l < Math.abs(t); l++) {
 					moveLeft();
 				}
 			//move right
 			} else if (t > 0) {
 				for (var r = 0; r < t; r++) {
 					moveRight();
 				}
 			}
 			//if the shape has moved at all
 			if (!contains(oldX, currentShape.x)) {
 				//move it down
 				var moveDownResults = moveDown();
 				while (moveDownResults.moved) {
 					moveDownResults = moveDown();
 				}
 				//set the 7 parameters of a genome
 				var algorithm = {
 					rowsCleared: moveDownResults.rowsCleared,
 					weightedHeight: Math.pow(getHeight(), 1.5),
 					cumulativeHeight: getCumulativeHeight(),
 					relativeHeight: getRelativeHeight(),
 					holes: getHoles(),
 					roughness: getRoughness()
 				};
 				//rate each move
 				var rating = 0;
 				rating += algorithm.rowsCleared * genomes[currentGenome].rowsCleared;
 				rating += algorithm.weightedHeight * genomes[currentGenome].weightedHeight;
 				rating += algorithm.cumulativeHeight * genomes[currentGenome].cumulativeHeight;
 				rating += algorithm.relativeHeight * genomes[currentGenome].relativeHeight;
 				rating += algorithm.holes * genomes[currentGenome].holes;
 				rating += algorithm.roughness * genomes[currentGenome].roughness;
 				//if the move loses the game, lower its rating
 				if (moveDownResults.lose) {
 					rating -= 500;
 				}
 				//push all possible moves, with their associated ratings and parameter values to an array
 				possibleMoves.push({rotations: rots, translation: t, rating: rating, algorithm: algorithm});
 				//update the position of old X value
 				oldX.push(currentShape.x);
 			}
 		}
 	}
 	//get last state
 	loadState(lastState);
 	//return array of all possible moves
 	return possibleMoves;
 }

/**
 * Returns the highest rated move in the given array of moves.
 * @param  {Array} moves An array of possible moves to choose from.
 * @return {Move}       The highest rated move from the moveset.
 */
 function getHighestRatedMove(moves) {
 	//start these values off small
 	var maxRating = -10000000000000;
 	var maxMove = -1;
 	var ties = [];
 	//iterate through the list of moves
 	for (var index = 0; index < moves.length; index++) {
 		//if the current moves rating is higher than our maxrating
 		if (moves[index].rating > maxRating) {
 			//update our max values to include this moves values
 			maxRating = moves[index].rating;
 			maxMove = index;
 			//store index of this move
 			ties = [index];
 		} else if (moves[index].rating == maxRating) {
 			//if it ties with the max rating
 			//add the index to the ties array
 			ties.push(index);
 		}
 	}
 	//eventually we'll set the highest move value to this move var
	var move = moves[ties[0]];
	//and set the number of ties
	move.algorithm.ties = ties.length;
	return move;
}

/**
 * Makes a move, which is decided upon using the parameters in the current genome.
 */
 function makeNextMove() {
 	//increment number of moves taken
 	movesTaken++;
 	//if its over the limit of moves
 	if (movesTaken > moveLimit) {
 		//update this genomes fitness value using the game score
 		genomes[currentGenome].fitness = clone(score);
 		//and evaluates the next genome
 		evaluateNextGenome();
 	} else {
 		//time to make a move

 		//we're going to re-draw, so lets store the old drawing
 		var oldDraw = clone(draw);
 		draw = false;
 		//get all the possible moves
 		var possibleMoves = getAllPossibleMoves();
 		//lets store the current state since we will update it
 		var lastState = getState();
 		//whats the next shape to play
 		nextShape();
 		//for each possible move 
 		for (var i = 0; i < possibleMoves.length; i++) {
 			//get the best move. so were checking all the possible moves, for each possible move. moveception.
 			var nextMove = getHighestRatedMove(getAllPossibleMoves());
 			//add that rating to an array of highest rates moves
 			possibleMoves[i].rating += nextMove.rating;
 		}
 		//load current state
 		loadState(lastState);
 		//get the highest rated move ever
 		var move = getHighestRatedMove(possibleMoves);
 		//then rotate the shape as it says too
 		for (var rotations = 0; rotations < move.rotations; rotations++) {
 			rotateShape();
 		}
 		//and move left as it says
 		if (move.translation < 0) {
 			for (var lefts = 0; lefts < Math.abs(move.translation); lefts++) {
 				moveLeft();
 			}
 			//and right as it says
 		} else if (move.translation > 0) {
 			for (var rights = 0; rights < move.translation; rights++) {
 				moveRight();
 			}
 		}
 		//update our move algorithm
 		if (inspectMoveSelection) {
 			moveAlgorithm = move.algorithm;
 		}
 		//and set the old drawing to the current
 		draw = oldDraw;
 		//output the state to the screen
 		output();
 		//and update the score
 		updateScore();
 	}
 }

/**
 * Updates the game.
 */
 function update() {
 	//if we have our AI turned on and the current genome is nonzero
 	//make a move
 	if (ai && currentGenome != -1) {
 		//move the shape down
 		var results = moveDown();
 		//if that didn't do anything
 		if (!results.moved) {
 			//if we lost
 			if (results.lose) {
 				//update the fitness
 				genomes[currentGenome].fitness = clone(score);
 				//move on to the next genome
 				evaluateNextGenome();
 			} else {
 				//if we didnt lose, make the next move
 				makeNextMove();
 			}
 		}
 	} else {
        //else just move down
 		moveDown();
 	}
 	//output the state to the screen
 	output();
 	//and update the score
 	updateScore();
 }

/**
 * Moves the current shape down if possible.
 * @return {Object} The results of the movement of the piece.
 */
 function moveDown() {
 	//array of possibilities
 	var result = {lose: false, moved: true, rowsCleared: 0};
 	//remove the shape, because we will draw a new one
 	removeShape();
 	//move it down the y axis
 	currentShape.y++;
 	//if it collides with the grid
 	if (collides(grid, currentShape)) {
 		//update its position
 		currentShape.y--;
 		//apply (stick) it to the grid 
 		applyShape();
 		//move on to the next shape in the bag
 		nextShape();
 		//clear rows and get number of rows cleared
 		result.rowsCleared = clearRows();
 		//check again if this shape collides with our grid
 		if (collides(grid, currentShape)) {
 			//reset
 			result.lose = true;
 			if (ai) {
 			} else {
 				reset();
 			}
 		}
 		result.moved = false;
 	}
 	//apply shape, update the score and output the state to the screen
 	applyShape();
 	score++;
 	updateScore();
 	output();
 	return result;
 }

/**
 * Moves the current shape to the left if possible.
 */
 function moveLeft() {
 	//remove current shape, slide it over, if it collides though, slide it back
 	removeShape();
 	currentShape.x--;
 	if (collides(grid, currentShape)) {
 		currentShape.x++;
 	}
 	//apply the new shape
 	applyShape();
 }

/**
 * Moves the current shape to the right if possible.
 */
 //same deal
 function moveRight() {
 	removeShape();
 	currentShape.x++;
 	if (collides(grid, currentShape)) {
 		currentShape.x--;
 	}
 	applyShape();
 }

/**
 * Rotates the current shape clockwise if possible.
 */
 //slide it if we can, else return to original rotation
 function rotateShape() {
 	removeShape();
 	currentShape.shape = rotate(currentShape.shape, 1);
 	if (collides(grid, currentShape)) {
 		currentShape.shape = rotate(currentShape.shape, 3);
 	}
 	applyShape();
 }

/**
 * Clears any rows that are completely filled.
 */
 function clearRows() {
 	//empty array for rows to clear
 	var rowsToClear = [];
 	//for each row in the grid
 	for (var row = 0; row < grid.length; row++) {
 		var containsEmptySpace = false;
 		//for each column
 		for (var col = 0; col < grid[row].length; col++) {
 			//if its empty
 			if (grid[row][col] === 0) {
 				//set this value to true
 				containsEmptySpace = true;
 			}
 		}
 		//if none of the columns in the row were empty
 		if (!containsEmptySpace) {
 			//add the row to our list, it's completely filled!
 			rowsToClear.push(row);
 		}
 	}
 	//increase score for up to 4 rows. it maxes out at 12000
 	if (rowsToClear.length == 1) {
 		score += 400;
 	} else if (rowsToClear.length == 2) {
 		score += 1000;
 	} else if (rowsToClear.length == 3) {
 		score += 3000;
 	} else if (rowsToClear.length >= 4) {
 		score += 12000;
 	}
 	//new array for cleared rows
 	var rowsCleared = clone(rowsToClear.length);
 	//for each value
 	for (var toClear = rowsToClear.length - 1; toClear >= 0; toClear--) {
 		//remove the row from the grid
 		grid.splice(rowsToClear[toClear], 1);
 	}
 	//shift the other rows
 	while (grid.length < 20) {
 		grid.unshift([0,0,0,0,0,0,0,0,0,0]);
 	}
 	//return the rows cleared
 	return rowsCleared;
 }

/**
 * Applies the current shape to the grid.
 */
 function applyShape() {
 	//for each value in the current shape (row x column)
 	for (var row = 0; row < currentShape.shape.length; row++) {
 		for (var col = 0; col < currentShape.shape[row].length; col++) {
 			//if its non-empty
 			if (currentShape.shape[row][col] !== 0) {
 				//set the value in the grid to its value. Stick the shape in the grid!
 				grid[currentShape.y + row][currentShape.x + col] = currentShape.shape[row][col];
 			}
 		}
 	}
 }

/**
 * Removes the current shape from the grid.
 */
 //same deal but reverse
 function removeShape() {
 	for (var row = 0; row < currentShape.shape.length; row++) {
 		for (var col = 0; col < currentShape.shape[row].length; col++) {
 			if (currentShape.shape[row][col] !== 0) {
 				grid[currentShape.y + row][currentShape.x + col] = 0;
 			}
 		}
 	}
 }

/**
 * Cycles to the next shape in the bag.
 */
 function nextShape() {
 	//increment the bag index
 	bagIndex += 1;
 	//if we're at the start or end of the bag
 	if (bag.length === 0 || bagIndex == bag.length) {
 		//generate a new bag of genomes
 		generateBag();
 	}
 	//if almost at end of bag
 	if (bagIndex == bag.length - 1) {
 		//store previous seed
 		var prevSeed = rndSeed;
 		//generate upcoming shape
 		upcomingShape = randomProperty(shapes);
 		//set random seed
 		rndSeed = prevSeed;
 	} else {
 		//get the next shape from our bag
 		upcomingShape = shapes[bag[bagIndex + 1]];
 	}
 	//get our current shape from the bag
 	currentShape.shape = shapes[bag[bagIndex]];
 	//define its position
 	currentShape.x = Math.floor(grid[0].length / 2) - Math.ceil(currentShape.shape[0].length / 2);
 	currentShape.y = 0;
 }

/**
 * Generates the bag of shapes.
 */
 function generateBag() {
 	bag = [];
 	var contents = "";
 	//7 shapes
 	for (var i = 0; i < 7; i++) {
 		//generate shape randomly
 		var shape = randomKey(shapes);
 		while(contents.indexOf(shape) != -1) {
 			shape = randomKey(shapes);
 		}
 		//update bag with generated shape
 		bag[i] = shape;
 		contents += shape;
 	}
 	//reset bag index
 	bagIndex = 0;
 }

/**
 * Resets the game.
 */
 function reset() {
 	score = 0;
 	grid = [[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	[0,0,0,0,0,0,0,0,0,0],
 	];
 	moves = 0;
 	generateBag();
 	nextShape();
 }

/**
 * Determines if the given grid and shape collide with one another.
 * @param  {Grid} scene  The grid to check.
 * @param  {Shape} object The shape to check.
 * @return {Boolean} Whether the shape and grid collide.
 */
 function collides(scene, object) {
 	//for the size of the shape (row x column)
 	for (var row = 0; row < object.shape.length; row++) {
 		for (var col = 0; col < object.shape[row].length; col++) {
 			//if its not empty
 			if (object.shape[row][col] !== 0) {
 				//if it collides, return true
 				if (scene[object.y + row] === undefined || scene[object.y + row][object.x + col] === undefined || scene[object.y + row][object.x + col] !== 0) {
 					return true;
 				}
 			}
 		}
 	}
 	return false;
 }

//for rotating a shape, how many times should we rotate
 function rotate(matrix, times) {
 	//for each time
 	for (var t = 0; t < times; t++) {
 		//flip the shape matrix
 		matrix = transpose(matrix);
 		//and for the length of the matrix, reverse each column
 		for (var i = 0; i < matrix.length; i++) {
 			matrix[i].reverse();
 		}
 	}
 	return matrix;
 }
//flip row x column to column x row
 function transpose(array) {
 	return array[0].map(function(col, i) {
 		return array.map(function(row) {
 			return row[i];
 		});
 	});
 }

/**
 * Outputs the state to the screen.
 */
 function output() {
 	if (draw) {
 		var output = document.getElementById("output");
 		var html = "<h1>TetNet</h1><h5>Evolutionary approach to Tetris AI</h5>var grid = [";
 		var space = "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;";
 		for (var i = 0; i < grid.length; i++) {
 			if (i === 0) {
 				html += "[" + grid[i] + "]";
 			} else {
 				html += "<br />" + space + "[" + grid[i] + "]";
 			}
 		}
 		html += "];";
 		for (var c = 0; c < colors.length; c++) {
 			html = replaceAll(html, "," + (c + 1), ",<font color=\"" + colors[c] + "\">" + (c + 1) + "</font>");
 			html = replaceAll(html, (c + 1) + ",", "<font color=\"" + colors[c] + "\">" + (c + 1) + "</font>,");
 		}
 		output.innerHTML = html;
 	}
 }

/**
 * Updates the side information.
 */
 function updateScore() {
 	if (draw) {
 		var scoreDetails = document.getElementById("score");
 		var html = "<br /><br /><h2>&nbsp;</h2><h2>Score: " + score + "</h2>";
 		html += "<br /><b>--Upcoming--</b>";
 		for (var i = 0; i < upcomingShape.length; i++) {
 			var next =replaceAll((upcomingShape[i] + ""), "0", "&nbsp;");
 			html += "<br />&nbsp;&nbsp;&nbsp;&nbsp;" + next;
 		}
 		for (var l = 0; l < 4 - upcomingShape.length; l++) {
 			html += "<br />";
 		}
 		for (var c = 0; c < colors.length; c++) {
 			html = replaceAll(html, "," + (c + 1), ",<font color=\"" + colors[c] + "\">" + (c + 1) + "</font>");
 			html = replaceAll(html, (c + 1) + ",", "<font color=\"" + colors[c] + "\">" + (c + 1) + "</font>,");
 		}
 		html += "<br />Speed: " + speed;
 		if (ai) {
 			html += "<br />Moves: " + movesTaken + "/" + moveLimit;
 			html += "<br />Generation: " + generation;
 			html += "<br />Individual: " + (currentGenome + 1)  + "/" + populationSize;
 			html += "<br /><pre style=\"font-size:12px\">" + JSON.stringify(genomes[currentGenome], null, 2) + "</pre>";
 			if (inspectMoveSelection) {
 				html += "<br /><pre style=\"font-size:12px\">" + JSON.stringify(moveAlgorithm, null, 2) + "</pre>";
 			}
 		}
 		html = replaceAll(replaceAll(replaceAll(html, "&nbsp;,", "&nbsp;&nbsp;"), ",&nbsp;", "&nbsp;&nbsp;"), ",", "&nbsp;");
 		scoreDetails.innerHTML = html;
 	}
 }

/**
 * Returns the current game state in an object.
 * @return {State} The current game state.
 */
 function getState() {
 	var state = {
 		grid: clone(grid),
 		currentShape: clone(currentShape),
 		upcomingShape: clone(upcomingShape),
 		bag: clone(bag),
 		bagIndex: clone(bagIndex),
 		rndSeed: clone(rndSeed),
 		score: clone(score)
 	};
 	return state;
 }

/**
 * Loads the game state from the given state object.
 * @param  {State} state The state to load.
 */
 function loadState(state) {
 	grid = clone(state.grid);
 	currentShape = clone(state.currentShape);
 	upcomingShape = clone(state.upcomingShape);
 	bag = clone(state.bag);
 	bagIndex = clone(state.bagIndex);
 	rndSeed = clone(state.rndSeed);
 	score = clone(state.score);
 	output();
 	updateScore();
 }

/**
 * Returns the cumulative height of all the columns.
 * @return {Number} The cumulative height.
 */
 function getCumulativeHeight() {
 	removeShape();
 	var peaks = [20,20,20,20,20,20,20,20,20,20];
 	for (var row = 0; row < grid.length; row++) {
 		for (var col = 0; col < grid[row].length; col++) {
 			if (grid[row][col] !== 0 && peaks[col] === 20) {
 				peaks[col] = row;
 			}
 		}
 	}
 	var totalHeight = 0;
 	for (var i = 0; i < peaks.length; i++) {
 		totalHeight += 20 - peaks[i];
 	}
 	applyShape();
 	return totalHeight;
 }

/**
 * Returns the number of holes in the grid.
 * @return {Number} The number of holes.
 */
 function getHoles() {
 	removeShape();
 	var peaks = [20,20,20,20,20,20,20,20,20,20];
 	for (var row = 0; row < grid.length; row++) {
 		for (var col = 0; col < grid[row].length; col++) {
 			if (grid[row][col] !== 0 && peaks[col] === 20) {
 				peaks[col] = row;
 			}
 		}
 	}
 	var holes = 0;
 	for (var x = 0; x < peaks.length; x++) {
 		for (var y = peaks[x]; y < grid.length; y++) {
 			if (grid[y][x] === 0) {
 				holes++;
 			}
 		}
 	}
 	applyShape();
 	return holes;
 }

/**
 * Returns an array that replaces all the holes in the grid with -1.
 * @return {Array} The modified grid array.
 */
 function getHolesArray() {
 	var array = clone(grid);
 	removeShape();
 	var peaks = [20,20,20,20,20,20,20,20,20,20];
 	for (var row = 0; row < grid.length; row++) {
 		for (var col = 0; col < grid[row].length; col++) {
 			if (grid[row][col] !== 0 && peaks[col] === 20) {
 				peaks[col] = row;
 			}
 		}
 	}
 	for (var x = 0; x < peaks.length; x++) {
 		for (var y = peaks[x]; y < grid.length; y++) {
 			if (grid[y][x] === 0) {
 				array[y][x] = -1;
 			}
 		}
 	}
 	applyShape();
 	return array;
 }

/**
 * Returns the roughness of the grid.
 * @return {Number} The roughness of the grid.
 */
 function getRoughness() {
 	removeShape();
 	var peaks = [20,20,20,20,20,20,20,20,20,20];
 	for (var row = 0; row < grid.length; row++) {
 		for (var col = 0; col < grid[row].length; col++) {
 			if (grid[row][col] !== 0 && peaks[col] === 20) {
 				peaks[col] = row;
 			}
 		}
 	}
 	var roughness = 0;
 	var differences = [];
 	for (var i = 0; i < peaks.length - 1; i++) {
 		roughness += Math.abs(peaks[i] - peaks[i + 1]);
 		differences[i] = Math.abs(peaks[i] - peaks[i + 1]);
 	}
 	applyShape();
 	return roughness;
 }

/**
 * Returns the range of heights of the columns on the grid.
 * @return {Number} The relative height.
 */
 function getRelativeHeight() {
 	removeShape();
 	var peaks = [20,20,20,20,20,20,20,20,20,20];
 	for (var row = 0; row < grid.length; row++) {
 		for (var col = 0; col < grid[row].length; col++) {
 			if (grid[row][col] !== 0 && peaks[col] === 20) {
 				peaks[col] = row;
 			}
 		}
 	}
 	applyShape();
 	return Math.max.apply(Math, peaks) - Math.min.apply(Math, peaks);
 }

/**
 * Returns the height of the biggest column on the grid.
 * @return {Number} The absolute height.
 */
 function getHeight() {
 	removeShape();
 	var peaks = [20,20,20,20,20,20,20,20,20,20];
 	for (var row = 0; row < grid.length; row++) {
 		for (var col = 0; col < grid[row].length; col++) {
 			if (grid[row][col] !== 0 && peaks[col] === 20) {
 				peaks[col] = row;
 			}
 		}
 	}
 	applyShape();
 	return 20 - Math.min.apply(Math, peaks);
 }

/**
 * Loads the archive given.
 * @param  {String} archiveString The stringified archive.
 */
 function loadArchive(archiveString) {
 	archive = JSON.parse(archiveString);
 	genomes = clone(archive.genomes);
 	populationSize = archive.populationSize;
 	generation = archive.currentGeneration;
 	currentGenome = 0;
 	reset();
 	roundState = getState();
 	console.log("Archive loaded!");
 }

/**
 * Clones an object.
 * @param  {Object} obj The object to clone.
 * @return {Object}     The cloned object.
 */
 function clone(obj) {
 	return JSON.parse(JSON.stringify(obj));
 }

/**
 * Returns a random property from the given object.
 * @param  {Object} obj The object to select a property from.
 * @return {Property}     A random property.
 */
 function randomProperty(obj) {
 	return(obj[randomKey(obj)]);
 }

/**
 * Returns a random property key from the given object.
 * @param  {Object} obj The object to select a property key from.
 * @return {Property}     A random property key.
 */
 function randomKey(obj) {
 	var keys = Object.keys(obj);
 	var i = seededRandom(0, keys.length);
 	return keys[i];
 }

 function replaceAll(target, search, replacement) {
 	return target.replace(new RegExp(search, 'g'), replacement);
 }

/**
 * Returns a random number that is determined from a seeded random number generator.
 * @param  {Number} min The minimum number, inclusive.
 * @param  {Number} max The maximum number, exclusive.
 * @return {Number}     The generated random number.
 */
 function seededRandom(min, max) {
 	max = max || 1;
 	min = min || 0;

 	rndSeed = (rndSeed * 9301 + 49297) % 233280;
 	var rnd = rndSeed / 233280;

 	return Math.floor(min + rnd * (max - min));
 }

 function randomNumBetween(min, max) {
 	return Math.floor(Math.random() * (max - min + 1) + min);
 }

 function randomWeightedNumBetween(min, max) {
 	return Math.floor(Math.pow(Math.random(), 2) * (max - min + 1) + min);
 }

 function randomChoice(propOne, propTwo) {
 	if (Math.round(Math.random()) === 0) {
 		return clone(propOne);
 	} else {
 		return clone(propTwo);
 	}
 }

 function contains(a, obj) {
 	var i = a.length;
 	while (i--) {
 		if (a[i] === obj) {
 			return true;
 		}
 	}
 	return false;
 }

/**
 * A node, representing a biological neuron.
 * @param {Number} ID  The ID of the node.
 * @param {Number} val The value of the node.
 */
 function Node(ID, val) {
 	this.id = ID;
 	this.incomingConnections = [];
 	this.outgoingConnections = [];
 	if (val === undefined) {
 		val = 0;
 	}
 	this.value = val;
 	this.bias = 0;
 }

/**
 * A connection, representing a biological synapse.
 * @param {String} inID   The ID of the incoming node.
 * @param {String} outID  The ID of the outgoing node.
 * @param {Number} weight The weight of the connection.
 */
 function Connection(inID, outID, weight) {
 	this.in = inID;
 	this.out = outID;
 	if (weight === undefined) {
 		weight = 1;
 	}
 	this.id = inID + ":" + outID;
 	this.weight = weight;
 }

/**
 * The neural network, containing nodes and connections.
 * @param {Object} config The configuration to use.
 */
 function Network(config) {
 	this.nodes = {};
 	this.inputs = [];
 	this.hidden = [];
 	this.outputs = [];
 	this.connections = {};
 	this.nodes.BIAS = new Node("BIAS", 1);

 	if (config !== undefined) {
 		var inputNum = config.inputNodes || 0;
 		var hiddenNum = config.hiddenNodes || 0;
 		var outputNum = config.outputNodes || 0;
 		this.createNodes(inputNum, hiddenNum, outputNum);

 		if (config.createAllConnections) {
 			this.createAllConnections(true);
 		}
 	}
 }

/**
 * Populates the network with the given number of nodes of each type.
 * @param  {Number} inputNum The number of input nodes to create.
 * @param  {Number} hiddenNum The number of hidden nodes to create.
 * @param  {Number} outputNum The number of output nodes to create.
 */
 Network.prototype.createNodes = function(inputNum, hiddenNum, outputNum) {
 	for (var i = 0; i < inputNum; i++) {
 		this.addInput();
 	}
 	for (var j = 0; j < hiddenNum; j++) {
 		this.addHidden();
 	}
 	for (var k = 0; k < outputNum; k++) {
 		this.addOutput();
 	}
 };

/**
 * @param {Number} [value] The value to set the node to [Default is 0].
 */
 Network.prototype.addInput = function(value) {
 	var nodeID = "INPUT:" + this.inputs.length;
 	if (value === undefined) {
 		value = 0;
 	}
 	this.nodes[nodeID] = new Node(nodeID, value);
 	this.inputs.push(nodeID);
 };

/**
 * Creates a hidden node.
 */
 Network.prototype.addHidden = function() {
 	var nodeID = "HIDDEN:" + this.hidden.length;
 	this.nodes[nodeID] = new Node(nodeID);
 	this.hidden.push(nodeID);
 };

/**
 * Creates an output node.
 */
 Network.prototype.addOutput = function() {
 	var nodeID = "OUTPUT:" + this.outputs.length;
 	this.nodes[nodeID] = new Node(nodeID);
 	this.outputs.push(nodeID);
 };

/**
 * Returns the node with the given ID.
 * @param  {String} nodeID The ID of the node to return.
 * @return {Node} The node with the given ID.
 */
 Network.prototype.getNodeByID = function(nodeID) {
 	return this.nodes[nodeID];
 };

/**
 * Returns the node of the given type at the given index.
 * @param  {String} type  The type of node requested [Accepted arguments: "INPUT", "HIDDEN", "OUTPUT"].
 * @param  {Number} index The index of the node (from the array containing nodes of the requested type).
 * @return {Node} The node requested. Will return null if no node is found.
 */
 Network.prototype.getNode = function(type, index) {
 	if (type.toUpperCase() == "INPUT") {
 		return this.nodes[this.inputs[index]];
 	} else 	if (type.toUpperCase() == "HIDDEN") {
 		return this.nodes[this.hidden[index]];
 	} else 	if (type.toUpperCase() == "OUTPUT") {
 		return this.nodes[this.outputs[index]];
 	}
 	return null;
 };

/**
 * Returns the connection with the given ID.
 * @param  {String} connectionID The ID of the connection to return.
 * @return {Connection} The connection with the given ID.
 */
 Network.prototype.getConnection = function(connectionID) {
 	return this.connections[connectionID];
 };

/**
 * Calculates the values of the nodes in the neural network.
 */
 Network.prototype.calculate = function calculate() {
 	this.updateNodeConnections();
 	for (var i = 0; i < this.hidden.length; i++) {
 		this.calculateNodeValue(this.hidden[i]);
 	}
 	for (var j = 0; j < this.outputs.length; j++) {
 		this.calculateNodeValue(this.outputs[j]);
 	}
 };

/**
 * Updates the node's to reference the current connections.
 */
 Network.prototype.updateNodeConnections = function() {
 	for (var nodeKey in this.nodes) {
 		this.nodes[nodeKey].incomingConnections = [];
 		this.nodes[nodeKey].outgoingConnections = [];
 	}
 	for (var connectionKey in this.connections) {
 		this.nodes[this.connections[connectionKey].in].outgoingConnections.push(connectionKey);
 		this.nodes[this.connections[connectionKey].out].incomingConnections.push(connectionKey);
 	}
 };

/**
 * Calculates and updates the value of the node with the given ID. Node values are computed using a sigmoid function.
 * @param  {String} nodeId The ID of the node to update.
 */
 Network.prototype.calculateNodeValue = function(nodeID) {
 	var sum = 0;
 	for (var incomingIndex = 0; incomingIndex < this.nodes[nodeID].incomingConnections.length; incomingIndex++) {
 		var connection = this.connections[this.nodes[nodeID].incomingConnections[incomingIndex]];
 		sum += this.nodes[connection.in].value * connection.weight;
 	}
 	this.nodes[nodeID].value = sigmoid(sum);
 };

/**
 * Creates a connection with the given values.
 * @param {String} inID The ID of the node that the connection comes from. 
 * @param {String} outID The ID of the node that the connection enters.
 * @param {Number} [weight] The weight of the connection [Default is 1].
 */
 Network.prototype.addConnection = function(inID, outID, weight) {
 	if (weight === undefined) {
 		weight = 1;
 	}
 	this.connections[inID + ":" + outID] = new Connection(inID, outID, weight);
 };

 /**
 * Creates all possible connections between nodes, not including connections to the bias node.
 * @param  {Boolean} randomWeights Whether to choose a random weight between -1 and 1, or to default to 1.
 */
 Network.prototype.createAllConnections = function(randomWeights) {
 	if (randomWeights === undefined) {
 		randomWeights = false;
 	}
 	var weight = 1;
 	for (var i = 0; i < this.inputs.length; i++) {
 		for (var j = 0; j < this.hidden.length; j++) {
 			if (randomWeights) {
 				weight = Math.random() * 4 - 2;
 			}
 			this.addConnection(this.inputs[i], this.hidden[j], weight);
 		}
 		if (randomWeights) {
 			weight = Math.random() * 4 - 2;
 		}
 		this.addConnection("BIAS", this.inputs[i], weight);
 	}
 	for (var k = 0; k < this.hidden.length; k++) {
 		for (var l = 0; l < this.outputs.length; l++) {
 			if (randomWeights) {
 				weight = Math.random() * 4 - 2;
 			}
 			this.addConnection(this.hidden[k], this.outputs[l], weight);
 		}
 		if (randomWeights) {
 			weight = Math.random() * 4 - 2;
 		}
 		this.addConnection("BIAS", this.hidden[k], weight);
 	}
 };

/**
 * Sets the value of the node with the given ID to the given value.
 * @param {String} nodeID The ID of the node to modify.
 * @param {Number} value The value to set the node to.
 */
 Network.prototype.setNodeValue = function(nodeID, value) {
 	this.nodes[nodeID].value = value;
 };

/**
 * Sets the values of the input neurons to the given values.
 * @param {Array} array An array of values to set the input node values to.
 */
 Network.prototype.setInputs = function(array) {
 	for (var i = 0; i < array.length; i++) {
 		this.nodes[this.inputs[i]].value = array[i];
 	}
 };

/**
 * Sets the value of multiple nodes, given an object with node ID's as parameters and node values as values.
 * @param {Object} valuesByID The values to set the nodes to.
 */
 Network.prototype.setMultipleNodeValues = function(valuesByID) {
 	for (var key in valuesByID) {
 		this.nodes[key].value = valuesByID[key];
 	}
 };


/**
 * A visualization of the neural network, showing all connections and nodes.
 * @param {Object} config The configuration to use.
 */
 function NetworkVisualizer(config) {
 	this.canvas = "NetworkVisualizer";
 	this.backgroundColor = "#FFFFFF";
 	this.nodeRadius = -1;
 	this.nodeColor = "grey";
 	this.positiveConnectionColor = "green";
 	this.negativeConnectionColor = "red";
 	this.connectionStrokeModifier = 1;
 	if (config !== undefined) {
 		if (config.canvas !== undefined) {
 			this.canvas = config.canvas;
 		}
 		if (config.backgroundColor !== undefined) {
 			this.backgroundColor = config.backgroundColor;
 		}
 		if (config.nodeRadius !== undefined) {
 			this.nodeRadius = config.nodeRadius;
 		}
 		if (config.nodeColor !== undefined) {
 			this.nodeColor = config.nodeColor;
 		}
 		if (config.positiveConnectionColor !== undefined) {
 			this.positiveConnectionColor = config.positiveConnectionColor;
 		}
 		if (config.negativeConnectionColor !== undefined) {
 			this.negativeConnectionColor = config.negativeConnectionColor;
 		}
 		if (config.connectionStrokeModifier !== undefined) {
 			this.connectionStrokeModifier = config.connectionStrokeModifier;
 		}
 	}
 }

/**
 * Draws the visualized network upon the canvas.
 * @param  {Network} network The network to visualize.
 */
 NetworkVisualizer.prototype.drawNetwork = function(network) {
 	var canv = document.getElementById(this.canvas); 
 	var ctx = canv.getContext("2d");
 	var radius;
 	ctx.fillStyle = this.backgroundColor;
 	ctx.fillRect(0, 0, canv.width, canv.height);
 	if (this.nodeRadius != -1) {
 		radius = this.nodeRadius;
 	} else {
 		radius = Math.min(canv.width, canv.height) / (Math.max(network.inputs.length, network.hidden.length, network.outputs.length, 3)) / 2.5;
 	}
 	var nodeLocations = {};
 	var inputX = canv.width / 5;
 	for (var inputIndex = 0; inputIndex < network.inputs.length; inputIndex++) {
 		nodeLocations[network.inputs[inputIndex]] = {x: inputX, y: canv.height / (network.inputs.length) * (inputIndex + 0.5)};
 	}
 	var hiddenX = canv.width / 2;
 	for (var hiddenIndex = 0; hiddenIndex < network.hidden.length; hiddenIndex++) {
 		nodeLocations[network.hidden[hiddenIndex]] = {x: hiddenX, y: canv.height / (network.hidden.length) * (hiddenIndex + 0.5)};
 	}
 	var outputX = canv.width / 5 * 4;
 	for (var outputIndex = 0; outputIndex < network.outputs.length; outputIndex++) {
 		nodeLocations[network.outputs[outputIndex]] = {x: outputX, y: canv.height / (network.outputs.length) * (outputIndex + 0.5)};
 	}
 	nodeLocations.BIAS = {x: canv.width / 3, y: radius / 2};
 	for (var connectionKey in network.connections) {
 		var connection = network.connections[connectionKey];
 		//if (connection.in != "BIAS" && connection.out != "BIAS") {
 			ctx.beginPath();
 			ctx.moveTo(nodeLocations[connection.in].x, nodeLocations[connection.in].y);
 			ctx.lineTo(nodeLocations[connection.out].x, nodeLocations[connection.out].y);
 			if (connection.weight > 0) {
 				ctx.strokeStyle = this.positiveConnectionColor;
 			} else {
 				ctx.strokeStyle = this.negativeConnectionColor;
 			}
 			ctx.lineWidth = connection.weight * this.connectionStrokeModifier;
 			ctx.lineCap = "round";
 			ctx.stroke();
 		//}
 	}
 	for (var nodeKey in nodeLocations) {
 		var node = network.getNodeByID(nodeKey);
 		ctx.beginPath();
 		if (nodeKey == "BIAS") {
 			ctx.arc(nodeLocations[nodeKey].x, nodeLocations[nodeKey].y, radius / 2.2, 0, 2 * Math.PI);
 		} else {
 			ctx.arc(nodeLocations[nodeKey].x, nodeLocations[nodeKey].y, radius, 0, 2 * Math.PI);
 		}
 		ctx.fillStyle = this.backgroundColor;
 		ctx.fill();
 		ctx.strokeStyle = this.nodeColor;
 		ctx.lineWidth = 3;
 		ctx.stroke();
 		ctx.globalAlpha = node.value;
 		ctx.fillStyle = this.nodeColor;
 		ctx.fill();
 		ctx.globalAlpha = 1; 	
 	}
 };


 BackpropNetwork.prototype = new Network();
 BackpropNetwork.prototype.constructor = BackpropNetwork;

/**
 * Neural network that is optimized via backpropagation.
 * @param {Object} config The configuration to use.
 */
 function BackpropNetwork(config) {
 	Network.call(this, config);
 	this.inputData = {};
 	this.targetData = {};
 	this.learningRate = 0.5;
 	this.step = 0;
 	this.totalErrorSum = 0;
 	this.averageError = [];

 	if (config !== undefined) {
 		if (config.learningRate !== undefined) {
 			this.learningRate = config.learningRate;
 		}
 		if (config.inputData !== undefined) {
 			this.setInputData(config.inputData);
 		}
 		if (config.targetData !== undefined) {
 			this.setTargetData(config.targetData);
 		}
 	}
 }

/**
 * Backpropagates the neural network, using the input and training data given. Currently does not affect connections to the bias node.
 */
 BackpropNetwork.prototype.backpropagate = function() {
 	this.step++;
 	if (this.inputData[this.step] === undefined) {
 		this.averageError.push(this.totalErrorSum / this.step);
 		this.totalErrorSum = 0;
 		this.step = 0;
 	}
 	for (var inputKey in this.inputData[this.step]) {
 		this.nodes[inputKey].value = this.inputData[this.step][inputKey];
 	}
 	this.calculate();
 	var currentTargetData = this.targetData[this.step];
 	var totalError = this.getTotalError();
 	this.totalErrorSum += totalError;
 	var newWeights = {};
 	for (var i = 0; i < this.outputs.length; i++) {
 		var outputNode = this.nodes[this.outputs[i]];
 		for (var j = 0; j < outputNode.incomingConnections.length; j++) {
 			var hiddenToOutput = this.connections[outputNode.incomingConnections[j]];
 			var deltaRuleResult = -(currentTargetData[this.outputs[i]] - outputNode.value) * outputNode.value * (1 - outputNode.value) * this.nodes[hiddenToOutput.in].value;
 			newWeights[hiddenToOutput.id] = hiddenToOutput.weight - this.learningRate * deltaRuleResult;
 		}
 	}
 	for (var k = 0; k < this.hidden.length; k++) {
 		var hiddenNode = this.nodes[this.hidden[k]];
 		for (var l = 0; l < hiddenNode.incomingConnections.length; l++) {
 			var inputToHidden = this.connections[hiddenNode.incomingConnections[l]];
 			var total = 0;
 			for (var m = 0; m < hiddenNode.outgoingConnections.length; m++) {
 				var outgoing = this.connections[hiddenNode.outgoingConnections[m]];
 				var outgoingNode = this.nodes[outgoing.out];
 				total += ((-(currentTargetData[outgoing.out] - outgoingNode.value)) * (outgoingNode.value * (1 - outgoingNode.value))) * outgoing.weight;
 			}
 			var outOverNet = hiddenNode.value * (1 - hiddenNode.value);
 			var netOverWeight = this.nodes[inputToHidden.in].value;
 			var result = total * outOverNet * netOverWeight;
 			newWeights[inputToHidden.id] = inputToHidden.weight - this.learningRate * result;
 		}
 	}
 	for (var key in newWeights) {
 		this.connections[key].weight = newWeights[key];
 	}
 };

/**
 * Adds a target result to the target data. This will be compared to the output in order to determine error.
 * @param {String} outputNodeID The ID of the output node whose value will be compared to the target.
 * @param {Number} target The value to compare against the output when checking for errors.
 */
 BackpropNetwork.prototype.addTarget = function(outputNodeID, target) {
 	this.targetData[outputNodeID] = target;
 };

/**
 * Sets the input data that will be compared to the target data.
 * @param {Array} array An array containing the data to be inputted (ex. [0, 1] will set the first input node
 * to have a value of 0 and the second to have a value of 1). Each array argument represents a single
 * step, and will be compared against the parallel set in the target data.
 */
 BackpropNetwork.prototype.setInputData = function() {
 	var all = arguments;
 	if (arguments.length == 1 && arguments[0].constructor == Array) {
 		all = arguments[0];
 	} 
 	this.inputData = {};
 	for (var i = 0; i < all.length; i++) {
 		var data = all[i];
 		var instance = {};
 		for (var j = 0; j < data.length; j++) {
 			instance["INPUT:" + j] = data[j]; 
 		}
 		this.inputData[i] = instance;
 	}
 };

/**
 * Sets the target data that will be used to check for total error.
 * @param {Array} array An array containing the data to be compared against (ex. [0, 1] will compare the first
 * output node against 0 and the second against 1). Each array argument represents a single step.
 */
 BackpropNetwork.prototype.setTargetData = function() {
 	var all = arguments;
 	if (arguments.length == 1 && arguments[0].constructor == Array) {
 		all = arguments[0];
 	} 
 	this.targetData = {};
 	for (var i = 0; i < all.length; i++) {
 		var data = all[i];
 		var instance = {};
 		for (var j = 0; j < data.length; j++) {
 			instance["OUTPUT:" + j] = data[j]; 
 		}
 		this.targetData[i] = instance;
 	}
 };

/**
 * Calculates the total error of all the outputs' values compared to the target data.
 * @return {Number} The total error.
 */
 BackpropNetwork.prototype.getTotalError = function() {
 	var sum = 0;
 	for (var i = 0; i < this.outputs.length; i++) {
 		sum += Math.pow(this.targetData[this.step][this.outputs[i]] - this.nodes[this.outputs[i]].value, 2) / 2;
 	}
 	return sum;
 };

/**
 * A gene containing the data for a single connection in the neural network.
 * @param {String} inID       The ID of the incoming node.
 * @param {String} outID      The ID of the outgoing node.
 * @param {Number} weight     The weight of the connection to create.
 * @param {Number} innovation The innovation number of the gene.
 * @param {Boolean} enabled   Whether the gene is expressed or not.
 */	
 function Gene(inID, outID, weight, innovation, enabled) {
 	if (innovation === undefined) {
 		innovation = 0;
 	}
 	this.innovation = innovation;
 	this.in = inID;
 	this.out = outID;
 	if (weight === undefined) {
 		weight = 1;
 	}
 	this.weight = weight;
 	if (enabled === undefined) {
 		enabled = true;
 	}
 	this.enabled = enabled;
 }

/**
 * Returns the connection that the gene represents.
 * @return {Connection} The generated connection.
 */
 Gene.prototype.getConnection = function() {
 	return new Connection(this.in, this.out, this.weight);
 };

/**
 * A genome containing genes that will make up the neural network.
 * @param {Number} inputNodes  The number of input nodes to create.
 * @param {Number} outputNodes The number of output nodes to create.
 */
 function Genome(inputNodes, outputNodes) {
 	this.inputNodes = inputNodes;
 	this.outputNodes = outputNodes;
 	this.genes = [];
 	this.fitness = -Number.MAX_VALUE;
 	this.globalRank = 0;
 	this.randomIdentifier = Math.random();
 }

 Genome.prototype.containsGene = function(inID, outID) {
 	for (var i = 0; i < this.genes.length; i++) {
 		if (this.genes[i].inID == inID && this.genes[i].outID == outID) {
 			return true;
 		}
 	}
 	return false;
 };

/**
 * A species of genomes that contains genomes which closely resemble one another, enough so that they are able to breed.
 */
 function Species() {
 	this.genomes = [];
 	this.averageFitness = 0;
 }

/**
 * Culls the genomes to the given amount by removing less fit genomes.
 * @param  {Number} [remaining] The number of genomes to cull to [Default is half the size of the species (rounded up)].
 */
 Species.prototype.cull = function(remaining) {
 	this.genomes.sort(compareGenomesDescending);
 	if (remaining === undefined) {
 		remaining = Math.ceil(this.genomes.length / 2);
 	}
 	while (this.genomes.length > remaining) {
 		this.genomes.pop();
 	}
 };

/**
 * Calculates the average fitness of the species.
 */
 Species.prototype.calculateAverageFitness = function() {
 	var sum = 0;
 	for (var j = 0; j < this.genomes.length; j++) {
 		sum += this.genomes[j].fitness;
 	}
 	this.averageFitness = sum / this.genomes.length;
 };

/**
 * Returns the network that the genome represents.
 * @return {Network} The generated network.
 */
 Genome.prototype.getNetwork = function() {
 	var network = new Network();
 	network.createNodes(this.inputNodes, 0, this.outputNodes);
 	for (var i = 0; i < this.genes.length; i++) {
 		var gene = this.genes[i];
 		if (gene.enabled) {
 			if (network.nodes[gene.in] === undefined && gene.in.indexOf("HIDDEN") != -1) {
 				network.nodes[gene.in] = new Node(gene.in);
 				network.hidden.push(gene.in);
 			}
 			if (network.nodes[gene.out] === undefined && gene.out.indexOf("HIDDEN") != -1) {
 				network.nodes[gene.out] = new Node(gene.out);
 				network.hidden.push(gene.out);
 			}
 			network.addConnection(gene.in, gene.out, gene.weight);
 		}
 	}
 	return network;
 };

/**
 * Creates and optimizes neural networks via neuroevolution, using the Neuroevolution of Augmenting Topologies method.
 * @param {Object} config The configuration to use.
 */
 function Neuroevolution(config) {
 	this.genomes = [];
 	this.populationSize = 100;
 	this.mutationRates = {
 		createConnection: 0.05,
 		createNode: 0.02,
 		modifyWeight: 0.15,
 		enableGene: 0.05,
 		disableGene: 0.1,
 		createBias: 0.1,
 		weightMutationStep: 2
 	};
 	this.inputNodes = 0;
 	this.outputNodes = 0;
 	this.elitism = true;
 	this.deltaDisjoint = 2;
 	this.deltaWeights = 0.4;
 	this.deltaThreshold = 2;
 	this.hiddenNodeCap = 10;
 	this.fitnessFunction = function (network) {log("ERROR: Fitness function not set"); return -1;};
 	this.globalInnovationCounter = 1;
 	this.currentGeneration = 0;
 	this.species = [];
 	this.newInnovations = {};
 	if (config !== undefined) {
 		if (config.populationSize !== undefined) {
 			this.populationSize = config.populationSize;
 		}
 		if (config.inputNodes !== undefined) {
 			this.inputNodes = config.inputNodes;
 		}
 		if (config.outputNodes !== undefined) {
 			this.outputNodes = config.outputNodes;
 		}
 		if (config.mutationRates !== undefined) {
 			var configRates = config.mutationRates;
 			if (configRates.createConnection !== undefined) {
 				this.mutationRates.createConnection = configRates.createConnection;
 			}
 			if (configRates.createNode !== undefined) {
 				this.mutationRates.createNode = configRates.createNode;
 			}
 			if (configRates.modifyWeight !== undefined) {
 				this.mutationRates.modifyWeight = configRates.modifyWeight;
 			}
 			if (configRates.enableGene !== undefined) {
 				this.mutationRates.enableGene = configRates.enableGene;
 			}
 			if (configRates.disableGene !== undefined) {
 				this.mutationRates.disableGene = configRates.disableGene;
 			}
 			if (configRates.createBias !== undefined) {
 				this.mutationRates.createBias = configRates.createBias;
 			}
 			if (configRates.weightMutationStep !== undefined) {
 				this.mutationRates.weightMutationStep = configRates.weightMutationStep;
 			}
 		}
 		if (config.elitism !== undefined) {
 			this.elitism = config.elitism;
 		}
 		if (config.deltaDisjoint !== undefined) {
 			this.deltaDisjoint = config.deltaDisjoint;
 		}
 		if (config.deltaWeights !== undefined) {
 			this.deltaWeights = config.deltaWeights;
 		}
 		if (config.deltaThreshold !== undefined) {
 			this.deltaThreshold = config.deltaThreshold;
 		}
 		if (config.hiddenNodeCap !== undefined) {
 			this.hiddenNodeCap = config.hiddenNodeCap;
 		}
 	}
 }

/**
 * Populates the population with empty genomes, and then mutates the genomes.
 */
 Neuroevolution.prototype.createInitialPopulation = function() {
 	this.genomes = [];
 	for (var i = 0; i < this.populationSize; i++) {
 		var genome = this.linkMutate(new Genome(this.inputNodes, this.outputNodes));
 		this.genomes.push(genome);
 	}
 	this.mutate();
 };

/**
 * Mutates the entire population based on the mutation rates.
 */
 Neuroevolution.prototype.mutate = function() {
 	for (var i = 0; i < this.genomes.length; i++) {
 		var network = this.genomes[i].getNetwork();
 		if (Math.random() < this.mutationRates.createConnection) {
 			this.genomes[i] = this.linkMutate(this.genomes[i]);
 		}
 		if (Math.random() < this.mutationRates.createNode && this.genomes[i].genes.length > 0 && network.hidden.length < this.hiddenNodeCap) {
 			var geneIndex = randomNumBetween(0, this.genomes[i].genes.length - 1);
 			var gene = this.genomes[i].genes[geneIndex];
 			if (gene.enabled && gene.in.indexOf("INPUT") != -1 && gene.out.indexOf("OUTPUT") != -1) {
 				var newNum = -1;
 				var found = true;
 				while (found) {
 					newNum++;
 					found = false;
 					for (var j = 0; j < this.genomes[i].genes.length; j++) {
 						if (this.genomes[i].genes[j].in.indexOf("HIDDEN:" + newNum) != -1 || this.genomes[i].genes[j].out.indexOf("HIDDEN:" + newNum) != -1) {
 							found = true;
 						}
 					}
 				}
 				if (newNum < this.hiddenNodeCap) {
 					var nodeName = "HIDDEN:" + newNum;
 					this.genomes[i].genes[geneIndex].enabled = false;
 					this.genomes[i].genes.push(new Gene(gene.in, nodeName, 1, this.globalInnovationCounter));
 					this.globalInnovationCounter++;
 					this.genomes[i].genes.push(new Gene(nodeName, gene.out, gene.weight, this.globalInnovationCounter));
 					this.globalInnovationCounter++;
 					network = this.genomes[i].getNetwork();
 				}
 			}
 		}
 		if (Math.random() < this.mutationRates.createBias) {
 			if (Math.random() > 0.5 && network.inputs.length > 0) {
 				var inputIndex = randomNumBetween(0, network.inputs.length - 1);
 				if (network.getConnection("BIAS:" + network.inputs[inputIndex]) === undefined) {
 					this.genomes[i].genes.push(new Gene("BIAS", network.inputs[inputIndex]));
 				}
 			} else if (network.hidden.length > 0) {
 				var hiddenIndex = randomNumBetween(0, network.hidden.length - 1);
 				if (network.getConnection("BIAS:" + network.hidden[hiddenIndex]) === undefined) {
 					this.genomes[i].genes.push(new Gene("BIAS", network.hidden[hiddenIndex]));
 				}
 			}
 		}
 		for (var k = 0; k < this.genomes[i].genes.length; k++) {
 			this.genomes[i].genes[k] = this.pointMutate(this.genomes[i].genes[k]);
 		}

 	}
 };

/**
 * Attempts to create a new connection gene in the given genome.
 * @param  {Genome} genome The genome to mutate.
 * @return {Genome} The mutated genome.
 */
 Neuroevolution.prototype.linkMutate = function(genome) {
 	var network = genome.getNetwork();
 	var inNode = "";
 	var outNode = "";
 	if (Math.random() < 1/3 || network.hidden.length <= 0) {
 		inNode = network.inputs[randomNumBetween(0, this.inputNodes - 1)];
 		outNode = network.outputs[randomNumBetween(0, this.outputNodes - 1)];
 	} else if (Math.random() < 2/3) {
 		inNode = network.inputs[randomNumBetween(0, this.inputNodes - 1)];
 		outNode = network.hidden[randomNumBetween(0, network.hidden.length - 1)];
 	} else {
 		inNode = network.hidden[randomNumBetween(0, network.hidden.length - 1)];
 		outNode = network.outputs[randomNumBetween(0, this.outputNodes - 1)];
 	}
 	if (!genome.containsGene(inNode, outNode)) {
 		var newGene = new Gene(inNode, outNode, Math.random() * 2 - 1);
 		if (this.newInnovations[newGene.in + ":" + newGene.out] === undefined) {
 			this.newInnovations[newGene.in + ":" + newGene.out] = this.globalInnovationCounter;
 			newGene.innovation = this.globalInnovationCounter;
 			this.globalInnovationCounter++;
 		} else {
 			newGene.innovation = this.newInnovations[newGene.in + ":" + newGene.out];
 		}
 		genome.genes.push(newGene);
 	}
 	return genome;
 };

 /**
 * Mutates the given gene based on the mutation rates.
 * @param  {Gene} gene The gene to mutate.
 * @return {Gene} The mutated gene.
 */
 Neuroevolution.prototype.pointMutate = function(gene) {
 	if (Math.random() < this.mutationRates.modifyWeight) {
 		gene.weight = gene.weight + Math.random() * this.mutationRates.weightMutationStep * 2 - this.mutationRates.weightMutationStep; 
 	}
 	if (Math.random() < this.mutationRates.enableGene) {
 		gene.enabled = true;
 	}
 	if (Math.random() < this.mutationRates.disableGene) {
 		gene.enabled = false;
 	}
 	return gene;
 };

/**
 * Crosses two parent genomes with one another, forming a child genome.
 * @param  {Genome} firstGenome  The first genome to mate.
 * @param  {Genome} secondGenome The second genome to mate.
 * @return {Genome} The resultant child genome.
 */
 Neuroevolution.prototype.crossover = function(firstGenome, secondGenome) {
 	var child = new Genome(firstGenome.inputNodes, firstGenome.outputNodes);
 	var firstInnovationNumbers = {};
 	for (var h = 0; h < firstGenome.genes.length; h++) {
 		firstInnovationNumbers[firstGenome.genes[h].innovation] = h;
 	}
 	var secondInnovationNumbers = {};
 	for (var j = 0; j < secondGenome.genes.length; j++) {
 		secondInnovationNumbers[secondGenome.genes[j].innovation] = j;
 	}
 	for (var i = 0; i < firstGenome.genes.length; i++) {
 		var geneToClone;
 		if (secondInnovationNumbers[firstGenome.genes[i].innovation] !== undefined) {
 			if (Math.random() < 0.5) {
 				geneToClone = firstGenome.genes[i];
 			} else {
 				geneToClone = secondGenome.genes[secondInnovationNumbers[firstGenome.genes[i].innovation]];
 			}
 		} else {
 			geneToClone = firstGenome.genes[i];
 		}
 		child.genes.push(new Gene(geneToClone.in, geneToClone.out, geneToClone.weight, geneToClone.innovation, geneToClone.enabled)); 		
 	}
 	for (var k = 0; k < secondGenome.genes.length; k++) {
 		if (firstInnovationNumbers[secondGenome.genes[k].innovation] === undefined) {
 			var secondDisjoint = secondGenome.genes[k];
 			child.genes.push(new Gene(secondDisjoint.in, secondDisjoint.out, secondDisjoint.weight, secondDisjoint.innovation, secondDisjoint.enabled)); 		
 		}
 	}
 	return child;
 };

/**
 * Evolves the population by creating a new generation and mutating the children.
 */
 Neuroevolution.prototype.evolve = function() {
 	this.currentGeneration++;
 	this.newInnovations = {};
 	this.genomes.sort(compareGenomesDescending);
 	var children = [];
 	this.speciate();
 	this.cullSpecies();
 	this.calculateSpeciesAvgFitness();

 	var totalAvgFitness = 0;
 	var avgFitnesses = [];
 	for (var s = 0; s < this.species.length; s++) {
 		totalAvgFitness += this.species[s].averageFitness;
 		avgFitnesses.push(this.species[s].averageFitness);
 	}
 	var arr = [];
 	for (var j = 0; j < this.species.length; j++) {
 		var childrenToMake = Math.floor(this.species[j].averageFitness / totalAvgFitness * this.populationSize);
 		arr.push(childrenToMake);
 		if (childrenToMake > 0) {
 			children.push(this.species[j].genomes[0]);
 		}
 		for (var c = 0; c < childrenToMake - 1; c++) {
 			children.push(this.makeBaby(this.species[j]));
 		}
 	}
 	while (children.length < this.populationSize) {
 		children.push(this.makeBaby(this.species[randomNumBetween(0, this.species.length - 1)]));
 	}
 	this.genomes = [];
 	this.genomes = this.genomes.concat(children);
 	this.mutate();
 	this.speciate();
 	log(this.species.length);
 };

/**
 * Sorts the genomes into different species.
 */
 Neuroevolution.prototype.speciate = function() {
 	this.species = [];
 	for (var i = 0; i < this.genomes.length; i++) {
 		var placed = false;
 		for (var j = 0; j < this.species.length; j++) {
 			if (!placed && this.species[j].genomes.length > 0 && this.isSameSpecies(this.genomes[i], this.species[j].genomes[0])) {
 				this.species[j].genomes.push(this.genomes[i]);
 				placed = true;
 			}
 		}
 		if (!placed) {
 			var newSpecies = new Species();
 			newSpecies.genomes.push(this.genomes[i]);
 			this.species.push(newSpecies);
 		}
 	}
 };

/**
 * Culls all the species to the given amount by removing less fit members of each species.
 * @param  {Number} [remaining] The number of genomes to cull all the species to [Default is half the size of the species].
 */
 Neuroevolution.prototype.cullSpecies = function(remaining) {
 	var toRemove = [];
 	for (var i = 0; i < this.species.length; i++) {
 		this.species[i].cull(remaining);
 		if (this.species[i].genomes.length < 1) {
 			toRemove.push(this.species[i]);
 		}
 	}
 	for (var r = 0; r < toRemove.length; r++) {
 		this.species.remove(toRemove[r]);
 	}
 };

/**
 * Calculates the average fitness of all the species.
 */
 Neuroevolution.prototype.calculateSpeciesAvgFitness = function() {
 	for (var i = 0; i < this.species.length; i++) {
 		this.species[i].calculateAverageFitness();
 	}
 };

/**
 * Creates a baby in the given species, with fitter genomes having a higher chance to reproduce.
 * @param  {Species} species The species to create a baby in.
 * @return {Genome} The resultant baby.
 */
 Neuroevolution.prototype.makeBaby = function(species) {
 	var mum = species.genomes[randomWeightedNumBetween(0, species.genomes.length - 1)];
 	var dad = species.genomes[randomWeightedNumBetween(0, species.genomes.length - 1)];
 	return this.crossover(mum, dad);
 };

/**
 * Calculates the fitness of all the genomes in the population.
 */
 Neuroevolution.prototype.calculateFitnesses = function() {
 	for (var i = 0; i < this.genomes.length; i++) {
 		this.genomes[i].fitness = this.fitnessFunction(this.genomes[i].getNetwork());
 	}
 };

/**
 * Returns the relative compatibility metric for the given genomes.
 * @param  {Genome} genomeA The first genome to compare.
 * @param  {Genome} genomeB The second genome to compare.
 * @return {Number} The relative compatibility metric. 
 */
 Neuroevolution.prototype.getCompatibility = function(genomeA, genomeB) {
 	var disjoint = 0;
 	var totalWeight = 0;
 	var aInnovationNums = {};
 	for (var i = 0; i < genomeA.genes.length; i++) {
 		aInnovationNums[genomeA.genes[i].innovation] = i;
 	}
 	var bInnovationNums = [];
 	for (var j = 0; j < genomeB.genes.length; j++) {
 		bInnovationNums[genomeB.genes[j].innovation] = j;
 	}
 	for (var k = 0; k < genomeA.genes.length; k++) {
 		if (bInnovationNums[genomeA.genes[k].innovation] === undefined) {
 			disjoint++;
 		} else {
 			totalWeight += Math.abs(genomeA.genes[k].weight - genomeB.genes[bInnovationNums[genomeA.genes[k].innovation]].weight);
 		}
 	}
 	for (var l = 0; l < genomeB.genes.length; l++) {
 		if (aInnovationNums[genomeB.genes[l].innovation] === undefined) {
 			disjoint++;
 		}
 	}
 	var n = Math.max(genomeA.genes.length, genomeB.genes.length);
 	return this.deltaDisjoint * (disjoint / n) + this.deltaWeights * (totalWeight / n);
 };

/**
 * Determines whether the given genomes are from the same species.
 * @param  {Genome}  genomeA The first genome to compare.
 * @param  {Genome}  genomeB The second genome to compare.
 * @return {Boolean} Whether the given genomes are from the same species.
 */
 Neuroevolution.prototype.isSameSpecies = function(genomeA, genomeB) {
 	return this.getCompatibility(genomeA, genomeB) < this.deltaThreshold;
 };

/**
 * Returns the genome with the highest fitness in the population.
 * @return {Genome} The elite genome.
 */
 Neuroevolution.prototype.getElite = function() {
 	this.genomes.sort(compareGenomesDescending);
 	return this.genomes[0];
 };


//Private static functions
function sigmoid(t) {
	return 1 / (1 + Math.exp(-t));
}

function randomNumBetween(min, max) {
	return Math.floor(Math.random() * (max - min + 1) + min);
}

function randomWeightedNumBetween(min, max) {
	return Math.floor(Math.pow(Math.random(), 2) * (max - min + 1) + min);
}

function compareGenomesAscending(genomeA, genomeB) {
	return genomeA.fitness - genomeB.fitness;
}

function compareGenomesDescending(genomeA, genomeB) {
	return genomeB.fitness - genomeA.fitness;
}

Array.prototype.remove = function() {
	var what, a = arguments, L = a.length, ax;
	while (L && this.length) {
		what = a[--L];
		while ((ax = this.indexOf(what)) !== -1) {
			this.splice(ax, 1);
		}
	}
	return this;
};


function log(text) {
	console.log(text);
}
              
            
!
999px

Console