HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<head>
<script type="importmap">
{
"imports": {
"three": "https://unpkg.com/three@0.157.0/build/three.module.js",
"OrbitControls": "https://unpkg.com/three@0.157.0/examples/jsm/controls/OrbitControls.js"
}
}
</script>
</head>
<canvas id="c">
</canvas>
<script src="https://rawgit.com/ubilabs/kd-tree-javascript/master/kdTree-min.js" type="text/javascript"></script>
<script src="https://unpkg.com/delaunator@3.0.2/delaunator.js"></script>
<script src="https://josephg.github.io/noisejs/perlin.js"></script>
html, body {
height: 100%;
margin: 0;
}
#c {
width: 100%;
height: 100%;
display: block;
}
import * as THREE from 'three';
import { OrbitControls } from 'OrbitControls';
var gui = new dat.GUI();
const canvas = document.querySelector('#c');
var scene = new THREE.Scene();
var raycaster = new THREE.Raycaster();
//create some camera
var camera = new THREE.PerspectiveCamera(55, window.innerWidth / window.innerHeight, 0.1, 1000);
camera.position.x = 0;
camera.position.y = 0;
camera.position.z = 1;
camera.lookAt(0, 0, 0);
var renderer = new THREE.WebGLRenderer({
canvas,
antialias: true
});
renderer.setSize(window.innerWidth, window.innerHeight);
renderer.setPixelRatio(2);
renderer.setClearColor(new THREE.Color(0x595959));
document.body.appendChild(renderer.domElement);
var controls = new OrbitControls(camera, renderer.domElement);
// white spotlight shining from the side, casting a shadow
var spotLight = new THREE.SpotLight(0xffffff, 2.5, 25, Math.PI / 6);
spotLight.position.set(4, 10, 7);
scene.add(spotLight);
//
function lerp(v0, v1, u) {
return v0 + (v1-v0) * u
}
function mod(x, y){
return ((x % y) + y) % y;
}
function clamp(a, min, max){
return Math.max(Math.min(a, max), min);
}
function fitrange(value, min1, max1, min2, max2){
return min2 + (value - min1) * (max2 - min2) / (max1 - min1);
}
function arg_min_fancy(a){ //slow
return a.reduce((iMin, x, i, arr) => x < arr[iMin] ? i : iMin, 0);
}
function arg_min(a){
let min = 1e10;
let index = -1;
for(let i = 0; i < a.length; i++){
if(a[i] < min){
min = a[i];
index = i;
}
}
return index;
}
function index_into_list(Q, A){
let out = [];
for(let i = 0; i < Q.length; i++){
out.push(A[Q[i]]);
}
return out;
}
//does argmin and index into list all at once for speed
function get_nearest_Q(Q, dists){
let min = 1e10;
let index = -1;
for(let i = 0; i < Q.length; i++){
if(dists[Q[i]] < min){
min = dists[Q[i]];
index = i;
}
}
return index;
}
function perlin2_grad(pos){
let h = .01;
let dx = noise.perlin2(pos.x - h, pos.z) - noise.perlin2(pos.x + h, pos.z);
let dy = noise.perlin2(pos.x, pos.z - h) - noise.perlin2(pos.x, pos.z + h);
return new THREE.Vector3(dx / h, 0, dy / h);
}
function perlin2_grad2(pos){
let h = .01;
let dx = noise.perlin2(pos.x - h, pos.y) - noise.perlin2(pos.x + h, pos.y);
let dy = noise.perlin2(pos.x, pos.y - h) - noise.perlin2(pos.x, pos.y + h);
return new THREE.Vector2(dx / h, dy / h);
}
function outerproduct2(u){
return [u.x * u.x, u.x * u.y,
u.y * u.x, u.y * u.y];
}
function add2(u, v){
return [u[0] + v[0], u[1] + v[1], u[2] + v[2], u[3] + v[3]]
}
function determinant2(q){
return q[0] * q[3] - q[1] * q[2];
}
function eigvals2(q){
//https://www.johndcook.com/blog/2021/05/07/trick-for-2x2-eigenvalues/
let m = (q[0] + q[3]) / 2.0;
let d = determinant2(q);
return [m + Math.sqrt(m * m - d), m - Math.sqrt(m * m - d)];
}
function eigvectors2(q, eigvals){
//https://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
let [g0, g1] = eigvals;
if(q[3] != 0){
return [[g0 - q[3], q[2]], [g1 - q[3], q[2]]];
}
if(q[2] != 0){
return [ [q[1], g0 - q[0]], [q[1], g1 - q[0]] ];
}
return [[1,0],[0,1]];
}
function normalize2(u){
let mag = Math.sqrt(u[0] * u[0] + u[1] * u[1]);
if(mag == 0.0){
return [0,0];
}
return [u[0] / mag, u[1] / mag]
}
function make_metric(vec2_in, anisotropy){
let q = outerproduct2(vec2_in);
let [g0,g1] = eigvals2(q);
let [e0, e1] = eigvectors2(q, [g0,g1]);
e0 = normalize2(e0); e1 = normalize2(e1);
function gamma(x, n){
return Math.pow(n + Math.abs(x), -1);
}
let n = 1 - anisotropy;
if(n == 0) n += 1e-7;
let gamma_g0 = gamma(g0, n);
let gamma_g1 = gamma(g1, n);
let h0 = outerproduct2(new THREE.Vector2(e0[0] * gamma_g0, e0[1] * gamma_g0));
let h1 = outerproduct2(new THREE.Vector2(e1[0] * gamma_g1, e1[1] * gamma_g1));
return add2(h0, h1);
}
function vec2m2x2(A, u){
return new THREE.Vector2(A[0] * u.x + A[2] * u.y, A[1] * u.x + A[3] * u.y);
}
function generate_pointset(point_count, size){
var points2d = [];
for (let i = 0; i < point_count; i++) {
let x = THREE.MathUtils.randFloatSpread(size.x);
let y = THREE.MathUtils.randFloatSpread(size.y);
points2d.push(new THREE.Vector2(x, y));
}
return points2d;
}
function curl_noise(pos, scale = 4){
let noise = perlin2_grad2(pos.clone().multiplyScalar(scale));
return new THREE.Vector2(noise.y, -noise.x);
//return new THREE.Vector2(1,0);
}
/*
left to implement:
validate the metric stuff works by comparing output values with stuff from houdini!!
*/
class Partio{
constructor(Geometry){
this.geometry = Geometry;
this.vert_count = this.geometry.getAttribute("position").count;
this.directions = Array(this.vert_count);
this.metrics = Array(this.vert_count);
this.npts = [];
this.npts_dists = [];
}
//might be faster to do this inline with the other calls instead of as one big ol thingy
nearpoints_all(radius, max_nb_count){
let n = this.vert_count;
let dists = Array.from({length: n}, e => Array(max_nb_count).fill(1e14)); //make nested filled arrays
let nearpoints = Array.from({length: n}, e => Array(max_nb_count).fill(-1));
for( let i = 0; i < n; i++){
for(let j = 0; j < n; j++){
if(i == j) continue;
let j_dist = this.P(i).distanceToSquared(this.P(j));
if(j_dist > radius) continue;
if(j_dist > dists[i][max_nb_count -1] && dists[i][max_nb_count -1] != -1) continue; //early skip
for(let k = 0; k < max_nb_count; k++){
if(j_dist < dists[i][k] || dists[i][k] == -1){
dists[i].splice(k, 0, j_dist);
nearpoints[i].splice(k,0,j);
dists[i].pop();
nearpoints[j].pop();
break;
}
}
}
}
this.npts = nearpoints;
this.npts_dists = dists;
}
nearpoints(position, radius, max_nb_count){
let n = this.vert_count;
let dists = Array(max_nb_count).fill(1e14); //make nested filled arrays
let nearpoints = Array(max_nb_count).fill(-1);
for(let j = 0; j < n; j++){
let j_dist = position.distanceToSquared(this.P(j));
if(j_dist > radius) continue;
if(j_dist > dists[max_nb_count -1] && dists[max_nb_count -1] != -1) continue; //early skip
for(let k = 0; k < max_nb_count; k++){
if(j_dist < dists[k] || dists[k] == -1){
dists.splice(k, 0, j_dist);
nearpoints.splice(k,0,j);
dists.pop();
nearpoints.pop();
break;
}
}
}
return nearpoints;
}
kd_dist(a, b){
//return a.distanceToSquared(b);
return Math.pow(a.x - b.x, 2) + Math.pow(a.y - b.y, 2);
}
init_kd(){
let positions = [];
for(let i = 0; i < this.vert_count; i++){
let pos = this.P(i);
positions.push({index: i, x:pos.x, y:pos.y});
}
return new kdTree(positions, this.kd_dist, ["x", "y"])
}
build_direction_attrib(funct){
for(let i = 0; i < this.vert_count; i++){
this.directions[i] = funct(this.P(i)); //needs to be an array of vector twos
}
}
generate_metrics(anisotropy){
for(let i = 0; i < this.vert_count; i++){
this.metrics[i] = make_metric(this.directions[i], anisotropy);
}
}
update_step(radius, max_nb_count, anisotropy, time_inc){
let kd = this.init_kd();
this.generate_metrics(anisotropy);
let outP = Array(this.vert_count);
let outDir = Array(this.vert_count);
for(let i = 0; i < this.vert_count; i++){
let out_vel = new THREE.Vector2(0,0);
let out_aniso_dir = this.directions[i].clone();//new THREE.Vector2(0,0);
let weights = 1.0;
let p0 = this.P(i);
//let npts = this.nearpoints(p0, radius, max_nb_count);
let npts = kd.nearest({x:p0.x, y:p0.y}, max_nb_count, [radius]);
for(let j = 0; j < npts.length; j++){
let npt = npts[j][0].index; //near point
//let npt = npts[j];
if(npt == i) continue;
/*
if(npt == -1){
continue;
}*/
let npt_metric = this.metrics[npt];
let npt_aniso_dir = this.directions[npt];
let p1 = this.P(npt);
//console.log(npt, npt_metric);
let dir = p1.clone().sub(p0);
let weight = dir.dot(vec2m2x2(npt_metric, dir));
out_aniso_dir.add(npt_aniso_dir.clone().multiplyScalar(weight));
let normalized_aniso_dir = npt_aniso_dir.clone().normalize();
let projection = normalized_aniso_dir.dot(dir.clone().negate());
let scaled_projection = normalized_aniso_dir.clone().multiplyScalar(projection);
out_vel.add((dir.clone().add(scaled_projection).multiplyScalar(weight))); //inplace updates suck!
weights += weight;
}
if(weights != 0){
out_vel.divideScalar(weights);
out_aniso_dir.divideScalar(weights);
outDir[i] = this.directions[i].clone().lerp(out_aniso_dir, time_inc);
}else{
//console.log("weight is zero, NPTS: " + npts);
outDir[i] = this.directions[i];
}
outP[i] = p0.clone().add(out_vel.multiplyScalar(time_inc));
}
this.geometry.setFromPoints(outP);
this.geometry.attributes.position.needsUpdate = true;
for(let i = 0; i < this.vert_count; i++){
this.directions[i] = outDir[i];
}
}
neighbours(index){
return this.neighbours_list[index];
}
P(index){
return new THREE.Vector2(this.geometry.getAttribute("position").array[index * 3 + 0],
this.geometry.getAttribute("position").array[index * 3 + 1]);
//this.geometry.getAttribute("position").array[index * 3 + 2]);
}
setFromPoints(points2d){
this.geometry.setFromPoints(points2d);
this.geometry.attributes.position.needsUpdate = true;
this.vert_count = this.geometry.getAttribute("position").count;
this.directions = Array(this.vert_count);
this.metrics = Array(this.vert_count);
}
}
var size = { x: 1, y: 1 };
var pointsCount = 2000;
let points2d = generate_pointset(pointsCount, size);
var geometry = new THREE.BufferGeometry().setFromPoints(points2d);
geometry.attributes.position.setUsage( THREE.DynamicDrawUsage );
let partio = new Partio(geometry);
partio.build_direction_attrib(x => {return curl_noise(x, 2)})
var cloud = new THREE.Points(
geometry,
new THREE.PointsMaterial({ color: 0x99ccff, size: .01 })
);
scene.add( cloud );
function make_viz_geo_from_partio(partio, viz_scale){
var viz_geo = new THREE.BufferGeometry()
let indices = [];
let verts = [];
let index = 0;
for(let i = 0; i < partio.vert_count; i++){
indices.push(index++, index++);
let p0 = partio.P(i);
let dir = partio.directions[i].clone();
let p1 = p0.clone().add(dir.multiplyScalar(viz_scale));
verts.push(p0, p1);
}
viz_geo.setFromPoints(verts);
viz_geo.setIndex(indices);
let viz_material = new THREE.LineBasicMaterial( {
transparent: true,
color: "yellow",
linewidth: 1,
linecap: 'round', //ignored by WebGLRenderer
linejoin: 'round' //ignored by WebGLRenderer
} );
return new THREE.LineSegments(viz_geo, viz_material);
}
let viz_scale = .01;
let vector_visualizer = make_viz_geo_from_partio(partio, viz_scale)
vector_visualizer.name = "vec_viz";
scene.add(vector_visualizer)
function update_viz_from_partio(viz_geometry, partio, viz_scale){
let verts = [];
for(let i = 0; i < partio.vert_count; i++){
let p0 = partio.P(i);
let dir = partio.directions[i].clone();
let p1 = p0.clone().add(dir.multiplyScalar(viz_scale));
verts.push(p0, p1);
}
viz_geometry.setFromPoints(verts);
viz_geometry.attributes.position.needsUpdate = true;
}
function reset_full_simulation(scene, partio, num_partios, viz_geometry, viz_scale, dir_funct){
var selectedObject = scene.getObjectByName(viz_geometry.name);
scene.remove( selectedObject );
let points2d = generate_pointset(num_partios, size);
partio.setFromPoints(points2d);
partio.build_direction_attrib(dir_funct);
partio.geometry.attributes.position.needsUpdate = true;
viz_geometry = make_viz_geo_from_partio(partio, viz_scale);
viz_geometry.name = "vec_viz";
scene.add(viz_geometry);
}
let direction_function_selector = {
0: x => {return curl_noise(x, gui_parms_static["Noise Scale"])},
1: x => {return new THREE.Vector2(1,0)},
2: x => {return new THREE.Vector2(0,1)},
}
let gui_parms_static = {
"Number of Particles": 2000,
"Toggle Vector Visualizers": true,
"Nearpoints Radius": .1,
"Max Nearpoints": 10,
"Visualizer Scale": .01,
"Noise Function": 0,
"Noise Scale": 2,
}
let gui_parms_dynamic = {
partio_updates: 1,
"Play/Pause Simulation": function() { this.partio_updates = (this.partio_updates + 1) % 2 },
"Reset Simulation": function() { reset_full_simulation(scene,
partio,
gui_parms_static["Number of Particles"],
vector_visualizer,
.01,
direction_function_selector[gui_parms_static["Noise Function"]]) },
}
gui.add(gui_parms_dynamic, "Play/Pause Simulation");
gui.add(gui_parms_dynamic, "Reset Simulation");
const noise_folder = gui.addFolder("Noise Settings")
noise_folder.add(gui_parms_static, "Noise Function", {"Curl Noise":0, "X+":1, "Y+":2}).onChange(x => { reset_full_simulation(scene, partio, gui_parms_static["Number of Particles"], vector_visualizer, .01, direction_function_selector[gui_parms_static["Noise Function"]])} );
noise_folder.add(gui_parms_static, "Noise Scale", 1, 5).onChange(x => { reset_full_simulation(scene, partio, gui_parms_static["Number of Particles"], vector_visualizer, .01, direction_function_selector[gui_parms_static["Noise Function"]])} );
gui.add(gui_parms_static, "Number of Particles", 100, 10000, 1).onChange(num_partios => { reset_full_simulation(scene, partio, num_partios, vector_visualizer, .01, direction_function_selector[gui_parms_static["Noise Function"]])} );
gui.add(gui_parms_static, "Max Nearpoints", 3, 100, 1);
gui.add(gui_parms_static, "Nearpoints Radius", .01, 1);
const viz_folder = gui.addFolder("Visualizer Settings")
viz_folder.add(gui_parms_static, "Visualizer Scale", .001, .1);
viz_folder.add(gui_parms_static, "Toggle Vector Visualizers");
function animate() {
requestAnimationFrame(animate);
var viz_geo = scene.getObjectByName(vector_visualizer.name);
if(gui_parms_dynamic.partio_updates){
partio.update_step(gui_parms_static["Nearpoints Radius"], gui_parms_static["Max Nearpoints"], 1, 1.0/24.0);
partio.geometry.attributes.position.needsUpdate = true;
update_viz_from_partio(viz_geo.geometry, partio, gui_parms_static["Visualizer Scale"]);
}
if(gui_parms_static["Toggle Vector Visualizers"]){
viz_geo.material.opacity = 1;
}else{
viz_geo.material.opacity = 0;
}
controls.update();
renderer.render(scene, camera);
};
animate();
//*/
Also see: Tab Triggers