HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="root"></div>
$colour-primary: #008A73;
$btn-bg: #3587B1;
body {
font-family: "Helvetica Neue", sans-serif;
font-size: 19px;
}
h1 {
font-size: 28px;
}
h1, p { text-align: center; }
table.sudoku {
border: 3px solid $colour-primary;
border-collapse: collapse;
margin: 20px auto;
td {
height: 2em;
width: 2em;
border: 1px solid #ccc;
text-align: center;
outline: none;
}
td input {
font-size: 1em;
width: 1em;
border: none;
text-align: center;
outline: none;
}
td:nth-child(3n) {
border-right: 3px solid $colour-primary;
}
tr:nth-child(3n) {
border-bottom: 3px solid $colour-primary;
}
}
.buttons {
text-align: center;
}
button {
color: $btn-bg;
border: none;
font-size: 1em;
padding: 10px;
margin: 0px 5px;
background-color: white;
display: inline-block;
border: 2px solid $btn-bg;
transition-property: all;
transition-duration: 0.5s;
cursor: pointer;
outline: none;
}
button:hover {
color: white;
background-color: $btn-bg;
}
class Cell {
constructor(row, col, value=0) {
this.value = value;
this.row = row;
this.col = col;
if (value === ".") {
this.value = 0;
} else {
this.value = parseInt(value, 10);
}
this.possibleValues = [];
}
toString() {
return this.value || ".";
}
}
/*
[[1, 2, 3], [4, 5, 6]].flatten()
[1, 2, 3, 4, 5, 6]
*/
Array.prototype.flatten = function() {
return [].concat.apply([], this);
};
const EMPTY = (() => {
let temp = [];
for (let i = 0; i < 81; i++) {
temp.push(".");
}
return temp.join("");
})();
class Grid {
constructor(input = EMPTY) {
let currentRow;
this.rows = [];
for (let idx = 0; idx < input.length; idx++) {
if (idx % 9 === 0) {
currentRow = [];
this.rows.push(currentRow);
}
currentRow.push(
new Cell(this.rows.length - 1, currentRow.length, input[idx])
);
}
}
toString() {
let output = "";
for (let i = 0; i < this.rows.length; i++) {
if (i !== 0 && i % 3 === 0) {
output += "---------+---------+---------\n";
}
let currentRow = this.rows[i];
for (let j = 0; j < currentRow.length; j++) {
if (j !== 0 && j % 3 === 0) {
output += "|";
}
output += " " + currentRow[j].toString() + " ";
}
output += "\n";
}
return output;
}
subgrids() {
if (!this.grids) {
this.grids = [];
for (let i = 0; i < 9; i += 3) {
for (let j = 0; j < 9; j += 3) {
this.grids.push(this.sameSubGridAs(new Cell(i, j)));
}
}
}
return this.grids;
}
columns() {
if (!this._columns) {
this._columns = [];
for (let i = 0; i < 9; i++) {
this._columns.push([]);
}
this.rows.forEach(function(row) {
row.forEach(function(cell, idx) {
this._columns[idx].push(cell);
}, this);
}, this);
}
return this._columns;
}
sameRowAs(cell) {
return this.rows[cell.row];
}
sameColAs(cell) {
return this.columns()[cell.col];
}
sameSubGridAs(cell) {
/*
Get all the cells in the same "sub grid" as the given cell. e.g.
for the cell "c" below the cells in the "same_sub_grid" (which are
marked x below) are returned along with the argument cell.
x x x | . . . | . . .
x c x | . . . | . . .
x x x | . . . | . . .
------+-------+------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
------+-------+------
. . . | . . . | . . .
. . . | . . . | . . .
. . . | . . . | . . .
*/
// row:
// 0 - 2 -> 0
// 3 - 5 -> 3
// 6 - 8 -> 5
// col:
// same as above
if (!cell.subgrid) {
let index = function(x) {
if (x <= 2) {
return 0;
} else if (x <= 5) {
return 3;
} else {
return 6;
}
};
let startRow = index(cell.row),
startCol = index(cell.col),
subgrid = [];
for (let i = startRow; i < startRow + 3; i++) {
let row = this.rows[i],
subGridRow = [];
for (let j = startCol; j < startCol + 3; j++) {
subGridRow.push(row[j]);
}
subgrid.push(subGridRow);
}
cell.subgrid = subgrid;
}
return cell.subgrid;
}
unsolved() {
return this.rows.flatten().filter(c => c.value === 0);
}
isSolved() {
return !this.rows.flatten().some(x => x.value === 0);
}
peers(cell) {
/*
Get the peers for the cell. The peers for the cell "c" are pictorially
represented below by the cells marked "x"
x x x | . . . | . . .
x c x | x x x | x x x
x x x | . . . | . . .
------+-------+------
. x . | . . . | . . .
. x . | . . . | . . .
. x . | . . . | . . .
------+-------+------
. x . | . . . | . . .
. x . | . . . | . . .
. x . | . . . | . . .
*/
if (!cell.peers) {
cell.peers = Array.from(
new Set(
this.sameColAs(cell)
.concat(this.sameRowAs(cell))
.concat(this.sameSubGridAs(cell).flatten())
.filter(x => x !== cell)
)
);
}
return cell.peers;
}
toFlatString() {
return this.rows
.flatten()
.map(x => x.toString())
.join("");
}
}
const DIGITS = [1, 2, 3, 4, 5, 6, 7, 8, 9];
// These are a couple of useful map functions, pulling them up here
// speeds things up.
const valueOfCell = cell => cell.value,
possibleValuesOfCell = cell => cell.possibleValues;
// filter unsolved cells out of a list cells.
const isUnsolved = cell => cell.value === 0;
class Solver {
constructor(grid) {
this.grid = grid;
this.guesses = 0;
this._solvedCells = [];
}
solve() {
// work out what the set of possible values is for each unsolve cell.
this._initPossibleValues();
// if there are any with only one possible value, set it.
this._findCellsWithOnePossibleValue();
// find any cells that have a possible value that doesn't occur
// anywhere else in the column, row or subgrid it's in
this._findUniqueValuesInUnits();
if (!this.grid.isSolved()) {
// this is a more tricky puzzle, so start searching for a solution.
this._search();
}
}
_search() {
// pick the cell with least possible values (more chance of guessing correctly)
const cell = this.grid.unsolved().sort((x, y) => {
const xVal = x.possibleValues.length * 100 + (x.row + x.col),
yVal = y.possibleValues.length * 100 + (y.row + y.col);
return xVal - yVal;
})[0];
for (let value of cell.possibleValues) {
// remember how many cells we had solved before we begin incase
// we need to unwind
let numSolved = this._solvedCells.length;
this.guesses += 1;
try {
this._setValueForCell(cell, value);
if (!this.grid.isSolved()) {
// no luck, keep looking...
this._search();
}
} catch (inconsistency) {
// here's the back tracking part, we've ended up in a position where we
// can't progress, so before we try another value, undo all the values
// we set since the last guess.
let resetPossibilities = [];
this._solvedCells
.splice(numSolved, this._solvedCells.length - numSolved)
.forEach(cell => {
cell.value = 0;
resetPossibilities.push(cell);
resetPossibilities = resetPossibilities.concat(
this.grid.peers(cell)
);
}, this);
this._initPossibleValues(
new Set(resetPossibilities.filter(isUnsolved))
);
}
}
if (!this.grid.isSolved()) {
// If we get here then we're also stuck since we haven't found a solution despite trying
// all possible values for a cell.
throw "Tried all values for this cell [" +
cell.row +
", " +
cell.col +
"]" +
cell.possibleValues;
}
}
_initPossibleValues(cells) {
/*
Initialise the possible values for the provided list of cells or
all the unsolved cells in the grid if no list was provided.
To do this we collect the "peers" for each cell (cells not marked . for the cell c):
x x x | . . . | . . .
5 c x | x x 2 | x 9 x
x x 3 | . . . | . . .
------+-------+------
. x . | . . . | . . .
. x . | . . . | . . .
. x . | . . . | . . .
------+-------+------
. x . | . . . | . . .
. 7 . | . . . | . . .
. x . | . . . | . . .
Remove from the peers any unsolved cells, then exclude from the list 1..9 any
numbers already present in the list of solved peers. e.g. in the above grid assuming
that any cell containing an x or a number is a peer of c and that the cells containing
the numbers are solved then the possible values for "c" are:
[1, 2, 3, 4, 5, 6, 7, 8, 9] - [5, 3, 2, 9, 7] = [8, 1, 4, 6]
*/
(cells || this.grid.unsolved()).forEach(cell => {
let peerValues = this.grid.peers(cell).map(valueOfCell),
possibleValues = DIGITS.filter(
d => peerValues.indexOf(d) === -1
);
cell.possibleValues = possibleValues;
});
}
_removeValueFromPeers(cell) {
// Summary:
// Remove the value of cell from the possible values of
// it's peers.
this.grid
.peers(cell)
.filter(isUnsolved)
.forEach(p => {
const idx = p.possibleValues.indexOf(cell.value);
if (idx !== -1) {
p.possibleValues.splice(idx, 1);
}
if (p.possibleValues.length === 0) {
throw "No possible values for cell [" +
p.row +
", " +
p.col +
"] " +
p.value;
}
});
}
_setValueForCell(cell, value) {
const peers = this.grid.peers(cell);
if (peers.some(x => x.value === value)) {
throw "Tried to set a value that already exists in peers";
}
cell.value = value;
cell.possibleValues = [];
this._solvedCells.push(cell);
this._removeValueFromPeers(cell);
this._findCellsWithOnePossibleValue(peers);
this._findUniqueValuesInUnits(cell);
}
_findCellsWithOnePossibleValue(cells) {
cells = cells || this.grid.unsolved();
cells.forEach(cell => {
if (cell.value === 0 && cell.possibleValues.length === 1) {
this._setValueForCell(cell, cell.possibleValues[0]);
}
});
}
_findUniqueValuesInUnits(cell) {
if (cell) {
[
this.grid.sameSubGridAs(cell).flatten(),
this.grid.sameColAs(cell),
this.grid.sameRowAs(cell)
].forEach(this._findUniquePossibiltyInUnit, this);
} else {
let subGrids = this.grid.subgrids().map(sg => sg.flatten());
for (let units of [subGrids, this.grid.columns(), this.grid.rows]) {
for (let unit of units) {
this._findUniquePossibiltyInUnit(unit);
}
}
}
}
_findUniquePossibiltyInUnit(unit) {
let unsolved = unit.filter(isUnsolved);
unsolved.forEach(unsolvedCell => {
let unique,
otherCellsPossValues = unit
.filter(c => c !== unsolvedCell && isUnsolved(c))
.map(possibleValuesOfCell)
.flatten();
//.reduce((a, b) => a.concat(b));
unique = unsolvedCell.possibleValues.filter(
x => otherCellsPossValues.indexOf(x) === -1
);
if (unique.length === 1) {
this._setValueForCell(unsolvedCell, unique[0]);
}
});
}
}
class Square extends React.Component {
fireOnChange(evt) {
const value = evt.target.value;
if (parseInt(value, 10) || value === "") {
this.props.onCellValueChange(this.props.row, this.props.col, evt.target.value);
}
}
render() {
const value = this.props.value;
return (
<input
type="text"
value={value === 0 ? "" : value}
maxLength="1"
onChange={this.fireOnChange.bind(this)}
/>
);
}
}
class SudukoBoard extends React.Component {
render() {
const grid = new Grid(this.props.puzzle);
const rows = grid.rows.map((row, idx) => {
return (
<tr key={idx}>
{row.map(cell => (
<td key={cell.col}>
<Square
value={cell.value}
row={cell.row}
col={cell.col}
onCellValueChange={this.props.onCellValueChange}
/>
</td>
))}
</tr>
);
});
return (
<table className="sudoku">
<tbody>{rows}</tbody>
</table>
);
}
}
class SudokuGame extends React.Component {
constructor(props) {
super(props);
this.state = { puzzle: this.props.puzzle };
}
solve() {
const { puzzle } = this.state,
grid = new Grid(puzzle);
new Solver(grid).solve();
this.setState({ puzzle: grid.toFlatString() });
}
onCellValueEdited(row, col, value) {
const grid = new Grid(this.state.puzzle);
grid.rows[row][col].value = value;
// update the state with the new puzzle string
this.setState({ puzzle: grid.toFlatString() });
}
clearAll() {
this.setState({ puzzle: new Grid().toFlatString() });
}
render() {
return (
<div className="game">
<h1>Sudoku Solver</h1>
<div className="game-board">
<SudukoBoard
puzzle={this.state.puzzle}
onCellValueChange={this.onCellValueEdited.bind(this)}
/>
</div>
<div className="buttons">
<button onClick={() => this.solve()}>Solve It!</button>
<button onClick={() => this.clearAll()}>Clear All</button>
</div>
</div>
);
}
}
ReactDOM.render(
<SudokuGame puzzle="4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......" />,
document.getElementById("root")
);
Also see: Tab Triggers