HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<html>
<head>
</head>
<body>
</body>
</html>
body {
padding: 0;
margin: 0;
display: -webkit-box;
display: -ms-flexbox;
display: flex;
-webkit-box-pack: center;
-ms-flex-pack: center;
justify-content: center;
-webkit-box-align: center;
-ms-flex-align: center;
align-items: center;
background: black;
}
canvas {
position: fixed;
top: 50%;
left: 50%;
-webkit-transform: translate(-50%, -50%);
transform: translate(-50%, -50%);
}
console.clear();
class Point {
constructor(id) {
this.pos = createVector(random(width), random(height));
this.id = id;
this.color = "rgba(255, 255, 255, 0.5)";
}
show() {
fill(this.color);
noStroke();
circle(this.pos.x, this.pos.y, 20);
const idText = this.id.toString();
fill(0);
text(
idText,
this.pos.x - textWidth(idText) / 2,
this.pos.y + textSize() / 2
);
}
constrain() {
if (this.pos.x < 60) {
this.pos.x = 60;
}
if (this.pos.x > width - 60) {
this.pos.x = width - 60;
}
if (this.pos.y < 60) {
this.pos.y = 60;
}
if (this.pos.y > height - 60) {
this.pos.y = height - 60;
}
}
}
function myBezierPoint(a, b, c, d, t) {
const t3 = t * t * t,
t2 = t * t,
f1 = -0.5 * t3 + t2 - 0.5 * t,
f2 = 1.5 * t3 - 2.5 * t2 + 1.0,
f3 = -1.5 * t3 + 2.0 * t2 + 0.5 * t,
f4 = 0.5 * t3 - 0.5 * t2;
return a * f1 + b * f2 + c * f3 + d * f4;
}
function indexMod(i, l) {
if (i < 0) {
return indexMod(l + i, l);
}
if (i >= l) {
return indexMod(i - l, l);
}
return i;
}
function threePointsAngle(center, A, B) {
const base = A.pos.copy().sub(center.pos);
const target = B.pos.copy().sub(center.pos);
const angle = base.angleBetween(target);
return angle;
}
function collideLineLine(A, B, C, D) {
const { x: x1, y: y1 } = A.pos;
const { x: x2, y: y2 } = B.pos;
const { x: x3, y: y3 } = C.pos;
const { x: x4, y: y4 } = D.pos;
// Avoid considering collision if one point is in common
if (A.id === C.id || A.id === D.id || B.id === C.id || B.id === D.id) {
return false;
}
// calculate the distance to intersection point
const uA =
((x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3)) /
((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1));
const uB =
((x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3)) /
((y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1));
// if uA and uB are between 0-1, lines are colliding
if (uA >= 0 && uA <= 1 && uB >= 0 && uB <= 1) {
return true;
}
return false;
}
class Terrain {
constructor() {
this.nbOfPoints = 9;
this.maxPush = 10;
this.pushCounter = 0;
this.reset();
}
reset() {
this.points = [];
for (let i = 0; i < this.nbOfPoints; i++) {
this.points.push(new Point(i));
this.points[i].constrain();
}
}
pushPoints() {
if (this.pushCounter > this.maxPush) {
this.pushCounter = 0;
return true;
}
this.pushCounter++;
let stable = true;
for (let i = 0; i < this.points.length; i++) {
for (let j = 0; j < this.points.length; j++) {
if (i === j) {
continue;
}
const a = this.points[i];
const b = this.points[j];
const distance = a.pos.copy().sub(b.pos);
if (distance.mag() < 150) {
a.pos.add(distance.copy().setMag(100).rotate(radians(15)));
a.pos.add(createVector(random(20), random(20)));
b.pos.sub(distance.copy().setMag(100).rotate(radians(15)));
a.pos.add(createVector(random(20), random(20)));
a.constrain();
b.constrain();
stable = false;
}
}
}
if (stable) {
this.pushCounter = 0;
}
// Just by safety is some point are too close remove one of them
let toBeRemoved = [];
for (let i = 0; i < this.points.length; i++) {
for (let j = 0; j < this.points.length; j++) {
const A = this.points[i];
const B = this.points[j];
if (A.id !== B.id && A.pos.dist(B.pos) < 40) {
toBeRemoved.push(A.id);
}
}
}
this.points = this.points.filter((p) => !toBeRemoved.includes(p.id));
return stable;
}
getLeftMostPoint() {
let leftMostPoint = this.points[0];
for (const point of this.points) {
if (point.pos.x < leftMostPoint.pos.x) {
leftMostPoint = point;
}
}
return leftMostPoint;
}
getDownMostPoint() {
let downMostPoint = this.points[0];
for (const point of this.points) {
if (point.pos.y > downMostPoint.pos.y) {
downMostPoint = point;
}
}
return downMostPoint;
}
getKNearest(point, points, k) {
const sortedByDistance = [...points]
.filter((p) => p.id !== point.id)
.sort((a, b) => {
return a.pos.dist(point.pos) - b.pos.dist(point.pos);
});
return sortedByDistance.splice(0, k);
}
getConcaveHull() {
// Largely inspired by https://repositorium.sdum.uminho.pt/bitstream/1822/6429/1/ConcaveHull_ACM_MYS.pdf
const downMostPoint = this.getDownMostPoint();
downMostPoint.color = "rgba(188, 198, 35, 0.5)";
const hull = [downMostPoint];
let remainingPoints = [...this.points].filter(
(p) => p.id !== downMostPoint.id
);
let guard = 0;
let K = 3;
let k = K;
//while (remainingPoints.length && guard < 10) {
while (
(hull.length < 2 || hull[0].id !== hull[hull.length - 1].id) &&
guard < 40
) {
guard++;
const current = hull[hull.length - 1];
if (hull.length === 4) {
remainingPoints.push(hull[0]);
}
// find the k nearest
const nearest = this.getKNearest(current, remainingPoints, k);
// sort the nearest neighbords by angle
nearest.sort((a, b) => {
const directionA = a.pos.copy().sub(current.pos).rotate(PI);
const directionB = b.pos.copy().sub(current.pos).rotate(PI);
return directionA.heading() - directionB.heading();
});
let placed = false;
let guard1 = 0;
let selected;
while (!placed && nearest.length && guard1 < 10) {
guard1++;
selected = nearest.pop();
if (hull.length < 2) {
placed = true;
continue;
}
let createCollision = false;
for (let i = 0; i < hull.length - 1; i++) {
const A = selected;
const B = hull[hull.length - 1];
const C = hull[i];
const D = hull[i + 1];
if (collideLineLine(A, B, C, D)) {
createCollision = true;
}
}
if (!createCollision) {
placed = true;
}
}
if (!selected) {
k++;
continue;
}
hull.push(selected);
remainingPoints = remainingPoints.filter(
(p) => p.id !== selected.id
);
}
this.concaveHull = hull;
}
getHull() {
// // S is the set of points
// // P will be the set of points which form the convex hull. Final set size is i.
// pointOnHull = leftmost point in S // which is guaranteed to be part of the CH(S)
// i := 0
// repeat
// P[i] := pointOnHull
// endpoint := S[0] // initial endpoint for a candidate edge on the hull
// for j from 0 to |S| do
// // endpoint == pointOnHull is a rare case and can happen only when j == 1 and a better endpoint has not yet been set for the loop
// if (endpoint == pointOnHull) or (S[j] is on left of line from P[i] to endpoint) then
// endpoint := S[j] // found greater left turn, update endpoint
// i := i + 1
// pointOnHull = endpoint
// until endpoint = P[0] // wrapped around to first hull point
const leftMostPoint = this.getLeftMostPoint();
leftMostPoint.color = "rgba(198, 35, 188, 0.5)";
const S = this.points;
const P = [];
let pointOnHull = leftMostPoint;
let i = 0;
let endpoint;
do {
P[i] = pointOnHull;
endpoint = S[0];
for (let j = 0; j < S.length; j++) {
const Sj = S[j];
const Pi = P[i];
const angle = threePointsAngle(Pi, endpoint, Sj);
if (endpoint.id === pointOnHull.id || angle < 0) {
endpoint = Sj;
}
}
i++;
pointOnHull = endpoint;
} while (endpoint.id !== P[0].id && i < 15);
P.push(P[0]);
this.convexHull = P;
}
generateBezierCurve(points, step) {
const curve = [];
for (let i = 0; i < points.length; i++) {
const a = points[indexMod(i - 1, points.length)];
const b = points[indexMod(i, points.length)];
const c = points[indexMod(i + 1, points.length)];
const d = points[indexMod(i + 2, points.length)];
const curvePoint = new Point(points.length);
(curvePoint.pos.x = myBezierPoint(
a.pos.x,
b.pos.x,
c.pos.x,
d.pos.x,
0.5
)),
(curvePoint.pos.y = myBezierPoint(
a.pos.y,
b.pos.y,
c.pos.y,
d.pos.y,
0.5
));
curve.push(points[indexMod(i)]);
curve.push(curvePoint);
}
if (!step || step === 0) {
curve.push(curve[0]);
return curve;
}
return this.generateBezierCurve(curve, step - 1);
}
getBezierConcaveHull() {
if (!this.concaveHull) {
throw new Error("can't generate bezier curve wihtout concave hull");
}
this.bezierConcaveHull = this.generateBezierCurve(
[...this.concaveHull].slice(0, -1),
3
);
}
getBezierConvexHull() {
if (!this.convexHull) {
throw new Error("can't generate bezier curve wihtout concave hull");
}
this.bezierConvexHull = this.generateBezierCurve(
[...this.convexHull].slice(0, -1),
3
);
}
show() {
for (const p of this.points) {
p.show();
}
/*
if (this.convexHull) {
stroke("rgba(198, 35, 188, 0.5)");
for (let i = 0; i < this.convexHull.length - 1; i++) {
const A = this.convexHull[i].pos;
const B = this.convexHull[i + 1].pos;
line(A.x, A.y, B.x, B.y);
}
}
*/
if (this.bezierConvexHull) {
stroke("rgba(198, 35, 188, 1)");
for (let i = 0; i < this.bezierConvexHull.length - 1; i++) {
const A = this.bezierConvexHull[i].pos;
const B = this.bezierConvexHull[i + 1].pos;
line(A.x, A.y, B.x, B.y);
ellipse(A.x, A.y, 2);
}
}
/*
if (this.concaveHull) {
stroke("rgba(188, 198, 35, 0.5)");
for (let i = 0; i < this.concaveHull.length - 1; i++) {
const A = this.concaveHull[i].pos;
const B = this.concaveHull[i + 1].pos;
line(A.x, A.y, B.x, B.y);
}
}
*/
if (this.bezierConcaveHull) {
stroke("rgba(188, 198, 35, 1)");
for (let i = 0; i < this.bezierConcaveHull.length - 1; i++) {
const A = this.bezierConcaveHull[i].pos;
const B = this.bezierConcaveHull[i + 1].pos;
line(A.x, A.y, B.x, B.y);
ellipse(A.x, A.y, 2);
}
}
}
}
class Track {
constructor(points, trackWidth) {
this.minAngle = radians(90);
const lefts = [];
const rights = [];
for (let i = 0; i < points.length - 1; i++) {
const anchor = points[i].pos;
const mover = points[i + 1].pos;
const left = mover
.copy()
.sub(anchor)
.rotate(PI / 2)
.setMag(20)
.add(anchor);
const right = mover
.copy()
.sub(anchor)
.rotate(-PI / 2)
.setMag(20)
.add(anchor);
//track.push(points[i].pos);
rights.push(right);
lefts.push(left);
}
this.right = [...rights, rights[0]];
this.left = [...lefts, lefts[0]];
this.track = [...points.map((p) => p.pos)];
}
smoothSide(list) {
let toRemove;
let currentMinAngle = radians(180);
for (let i = 1; i < list.length - 2; i++) {
const A = list[i - 1];
const center = list[i];
const B = list[i + 1];
const angle = Math.abs(
threePointsAngle({ pos: center }, { pos: A }, { pos: B })
);
if (angle < currentMinAngle) {
currentMinAngle = angle;
toRemove = i;
}
}
console.log(
currentMinAngle,
degrees(currentMinAngle),
"min",
this.minAngle,
degrees(this.minAngle)
);
if (currentMinAngle < this.minAngle) {
list.splice(toRemove, 1);
return false;
}
return true;
}
smoothTrack() {
let toRemove;
let currentMinAngle = radians(180);
for (let i = 1; i < this.track.length - 2; i++) {
const A = this.track[i - 1];
const center = this.track[i];
const B = this.track[i + 1];
const angle = Math.abs(
threePointsAngle({ pos: center }, { pos: A }, { pos: B })
);
if (angle < currentMinAngle) {
currentMinAngle = angle;
toRemove = i;
}
}
console.log(
currentMinAngle,
degrees(currentMinAngle),
"min",
this.minAngle,
degrees(this.minAngle)
);
//if (currentMinAngle < this.minAngle) {
if (currentMinAngle < radians(100)) {
this.left.splice(toRemove, 1);
this.track.splice(toRemove, 1);
this.right.splice(toRemove, 1);
return false;
}
return true;
}
smooth() {
const doneTrack = this.smoothTrack();
if (!doneTrack) {
return false;
}
const doneRight = this.smoothSide(this.left);
const doneLeft = this.smoothSide(this.right);
return doneRight && doneLeft;
}
show() {
stroke("rgba(19, 58, 216, 1)");
for (let i = 0; i < this.track.length - 1; i++) {
const A = this.track[i];
const B = this.track[i + 1];
line(A.x, A.y, B.x, B.y);
ellipse(A.x, A.y, 2);
}
stroke("green");
for (let i = 0; i < this.right.length - 1; i++) {
const A = this.right[i];
const B = this.right[i + 1];
line(A.x, A.y, B.x, B.y);
ellipse(A.x, A.y, 2);
}
stroke("red");
for (let i = 0; i < this.left.length - 1; i++) {
const A = this.left[i];
const B = this.left[i + 1];
line(A.x, A.y, B.x, B.y);
ellipse(A.x, A.y, 2);
}
}
}
function pushOrReset() {
const stable = terrain.pushPoints();
if (!stable) {
pushOrReset();
} else {
setTimeout(() => {
if (generate === EASY) {
terrain.getHull();
terrain.getBezierConvexHull();
track = new Track(terrain.bezierConvexHull, 10);
} else {
terrain.getConcaveHull();
terrain.getBezierConcaveHull();
track = new Track(terrain.bezierConcaveHull, 10);
}
const isSmooth = track.smooth();
const smoothLoop = setInterval(() => {
console.log("smooth again");
const isSmooth = track.smooth();
console.log("result isSmooth", isSmooth);
if (isSmooth) {
clearInterval(smoothLoop);
setTimeout(() => {
terrain.reset();
pushOrReset();
}, 5000);
}
}, 100);
}, 1000);
}
}
let terrain;
let track;
let select;
const HARD = "HARD";
const EASY = "EASY";
let generate = "HARD";
function setup() {
createCanvas(800, 800);
select = createSelect();
select.position(10, 10);
select.option(HARD);
select.option(EASY);
select.changed(() => {
generate = select.value();
});
terrain = new Terrain();
pushOrReset();
}
function draw() {
background(10);
//terrain.show();
if (track) {
track.show();
}
}
function keyPressed() {
if (keyCode === UP_ARROW) {
terrain.pushPoints();
}
if (keyCode === DOWN_ARROW) {
terrain.reset();
pushOrReset();
}
}
Also see: Tab Triggers