Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <canvas id="canvas"></canvas>
              
            
!

CSS

              
                
              
            
!

JS

              
                const canvas = document.getElementsByTagName('canvas')[0];
let ctx = undefined
let __scale =1

try {
    ctx = canvas.getContext('2d');
    canvas.width = window.innerWidth;
    canvas.height = window.innerHeight;
}
catch (e) {
    console.log(e)
}
class Vector {
    constructor(x = 0, y = 0) {
        if (isNaN(x) || isNaN(y)) {
            throw new Error('Vector constructor arguments must be numbers.');
        }
        this._x = x;
        this._y = y;
    }
    get x() { return this._x; }
    get y() { return this._y; }
    set x(value) {
        if (isNaN(value)) { throw new Error('newValue is NaN'); }
        this._x = value;
    }
    set y(value) {
        if (isNaN(value)) { throw new Error('newValue is NaN'); }
        this._y = value;fff2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                
    }
    add(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return new Vector(this.x + v.x, this.y + v.y); }
    sub(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return new Vector(this.x - v.x, this.y - v.y); }
    mul(s) { if(isNaN(s)) throw new Error('isNaN'); return new Vector(this.x * s, this.y * s); }
    div(s) { if(isNaN(s)) throw new Error('isNaN'); return new Vector(this.x / s, this.y / s); }
    mag() { return Math.sqrt(this.x * this.x + this.y * this.y); }
    norm() { return this.div(this.mag()); }
    distance(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return this.sub(v).mag(); }
    length() { return this.sub(new Vector(0, 0)).mag(); }
    distanceTo(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return this.distance(v); }
    dot(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return this.x * v.x + this.y * v.y; }
    cross(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return this.x * v.y - this.y * v.x; }
    rotate(a) {
        let c = Math.cos(a);
        let s = Math.sin(a);
        return new Vector(c * this.x - s * this.y, s * this.x + c * this.y);
    }
    set(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); this.x = v.x; this.y = v.y; return this; }
    angle() { return Math.atan2(this.y, this.x); }
    acosh() { return Math.log(this.x + Math.sqrt(this.x * this.x - 1)); }
    scale(v) { if(isNaN(v.x)||isNaN(v.y)) throw new Error('isNaN'); return new Vector(this.x * v.x, this.y * v.y); }
    hyperbolicProjection(boundsRadius) {
        const p = this
        const r = Math.sqrt(p.x * p.x + p.y * p.y);
        const theta = Math.atan2(p.y, p.x);
        const scale = r / (1 + r / boundsRadius);
        return new Vector(scale * Math.cos(theta), scale * Math.sin(theta));
    }
    validate() { if (!isNaN(this.x) || !isNaN(this.y)) throw new Error('value isNaN!') }
    copy() { return new Vector(this.x, this.y); }
    toString() { return "(" + this.x + "," + this.y + ")"; }
    static polar(r, a) { return new Vector(r * Math.cos(a), r * Math.sin(a)); }
    static random() { return new Vector(Math.random(), Math.random()); }
    static fromAngle(a) { return new Vector(Math.cos(a), Math.sin(a)); }   
}
class Tripole {
    static get nonce() {
        if (!Tripole._nonce) Tripole._nonce = 0;
        return Tripole._nonce++;
    }

    constructor(name, environment = null, pos = new Vector(0, 0), entropic_degree = 0, genetics = null) {
        if (!(pos instanceof Vector)) {
            pos = new Vector(); // defaults to (0, 0)
        }
        this.name = name + '_' + Tripole.nonce;
        this.objects = [];
        this.environment = environment;
        this._position = pos;
        this._entropic_degree = entropic_degree;
        this.cycle_rate = 1;
        this.data = {
            energy: 0,
            entropy: 0,
            efficiency: 0.1
        };
        this.lastAction = null;
        this.environment && this.environment.objects.push(this);
        this.currentCycle = 0;
        this.mass = 1;
        this.velocity = new Vector(0, 0);
        this.particleSystem = new ParticleSystem();
        this.age = 0;
        this.lifespan = Math.random() * 1000 + 500; // Random lifespan between 500 and 1500
        this.bonded = false;
        this.bondedWith = null;
        this.bondStrength = 0;

        if (!genetics) {
            this._genetics = {
                attractionCoefficient: Math.random() * 5,
                repulsionCoefficient: Math.random() * 5,
                sensorBias: Math.random() * 5,
                actuatorBias: Math.random() * 5,
                mediatorBias: Math.random() * 5,
                sensorThreshold: Math.random() * 5,
                actuatorThreshold: Math.random() * 5,
                mediatorThreshold: Math.random() * 5,
                sensorWeight: Math.random() * 5,
                actuatorWeight: Math.random() * 5,
                mediatorWeight: Math.random() * 5,
                color: {
                    r: Math.random() * 256,
                    g: Math.random() * 256,
                    b: Math.random() * 256
                }
            };
        } else {
            this._genetics = genetics;
        }

        this.attractionCoefficient = this.genetics.attractionCoefficient;
        this.repulsionCoefficient = this.genetics.repulsionCoefficient;
        this.sensorBias = this.genetics.sensorBias;
        this.actuatorBias = this.genetics.actuatorBias;
        this.mediatorBias = this.genetics.mediatorBias;
        this.sensorThreshold = this.genetics.sensorThreshold;
        this.actuatorThreshold = this.genetics.actuatorThreshold;
        this.mediatorThreshold = this.genetics.mediatorThreshold;
        this.sensorWeight = this.genetics.sensorWeight;
        this.actuatorWeight = this.genetics.actuatorWeight;
        this.mediatorWeight = this.genetics.mediatorWeight;
        this.historical_fitness = [];
    }

    get genetics() {
        return this._genetics;
    }

    set genetics(g) {
        this._genetics = g;
        this.attractionCoefficient = this.genetics.attractionCoefficient;
        this.repulsionCoefficient = this.genetics.repulsionCoefficient;
        this.sensorBias = this.genetics.sensorBias;
        this.actuatorBias = this.genetics.actuatorBias;
        this.mediatorBias = this.genetics.mediatorBias;
        this.sensorThreshold = this.genetics.sensorThreshold;
        this.actuatorThreshold = this.genetics.actuatorThreshold;
        this.mediatorThreshold = this.genetics.mediatorThreshold;
        this.sensorWeight = this.genetics.sensorWeight;
        this.actuatorWeight = this.genetics.actuatorWeight;
        this.mediatorWeight = this.genetics.mediatorWeight;
    }

    calculateFitness() {
        const nearbyTripoles = this.nearby(250); // Check within a radius of 250 for fitness calculation.
        const averageEntropy = nearbyTripoles.reduce((acc, tripole) => acc + tripole.data.entropy, 0) / (nearbyTripoles.length || 1);
        this.fitness = (1 / averageEntropy) * nearbyTripoles.length;
        return this.fitness;
    }

    mutate() {
        const mutationRate = 0.1; // Mutation rate between 0 and 1.
        if (Math.random() < mutationRate) {
            // Change one or more traits by a small amount.
            this.genetics.attractionCoefficient += (Math.random() * 2 - 1) * 0.1;
            this.genetics.repulsionCoefficient += (Math.random() * 2 - 1) * 0.1;
            this.genetics.sensorBias += (Math.random() * 2 - 1) * 0.1;
            this.genetics.actuatorBias += (Math.random() * 2 - 1) * 0.1;
            this.genetics.mediatorBias += (Math.random() * 2 - 1) * 0.1;
            this.genetics.sensorThreshold += (Math.random() * 2 - 1) * 0.1;
            this.genetics.actuatorThreshold += (Math.random() * 2 - 1) * 0.1;
            this.genetics.mediatorThreshold += (Math.random() * 2 - 1) * 0.1;
            this.genetics.sensorWeight += (Math.random() * 2 - 1) * 0.1;
            this.genetics.actuatorWeight += (Math.random() * 2 - 1) * 0.1;
            this.genetics.mediatorWeight += (Math.random() * 2 - 1) * 0.1;
            this.genetics.color.r += (Math.random() * 2 - 1) * 10;
            this.genetics.color.g += (Math.random() * 2 - 1) * 10;
            this.genetics.color.b += (Math.random() * 2 - 1) * 10;
        }
    }

    static crossover(parentA, parentB) {
        const genetics = {
            attractionCoefficient: (parentA.genetics.attractionCoefficient + parentB.genetics.attractionCoefficient) / 2,
            repulsionCoefficient: (parentA.genetics.repulsionCoefficient + parentB.genetics.repulsionCoefficient) / 2,
            sensorBias: (parentA.genetics.sensorBias + parentB.genetics.sensorBias) / 2,
            actuatorBias: (parentA.genetics.actuatorBias + parentB.genetics.actuatorBias) / 2,
            mediatorBias: (parentA.genetics.mediatorBias + parentB.genetics.mediatorBias) / 2,
            sensorThreshold: (parentA.genetics.sensorThreshold + parentB.genetics.sensorThreshold) / 2,
            actuatorThreshold: (parentA.genetics.actuatorThreshold + parentB.genetics.actuatorThreshold) / 2,
            mediatorThreshold: (parentA.genetics.mediatorThreshold + parentB.genetics.mediatorThreshold) / 2,
            sensorWeight: (parentA.genetics.sensorWeight + parentB.genetics.sensorWeight) / 2,
            actuatorWeight: (parentA.genetics.actuatorWeight + parentB.genetics.actuatorWeight) / 2,
            mediatorWeight: (parentA.genetics.mediatorWeight + parentB.genetics.mediatorWeight) / 2,
            color: {
                r: (parentA.genetics.color.r + parentB.genetics.color.r) / 2,
                g: (parentA.genetics.color.g + parentB.genetics.color.g) / 2,
                b: (parentA.genetics.color.b + parentB.genetics.color.b) / 2
            }
        };
        return genetics;
    }

    get radius() { return this.energy * 4; }
    get energy() { let totalEnergy = this.data.energy || 0; for (let sub_tripole of this.objects) { totalEnergy += sub_tripole.energy; } return totalEnergy; }
    get entropy() { let totalEntropy = this.data.entropy || 0; for (let sub_tripole of this.objects) { totalEntropy += sub_tripole.entropy; } return totalEntropy; }
    set pos(pos) { this._position = pos; }
    get pos() { return this._position; }
    get impedance() { return this.energy / this.entropy; }
    get entropic_degree() { return this.data.entropy / this.data.efficiency * 180; }
    get bounds() {
        if (!this.objects.length) return new Vector(0, 0);
        const min_x = Math.min(...this.objects.map((obj) => obj.pos.x));
        const max_x = Math.max(...this.objects.map((obj) => obj.pos.x));
        const min_y = Math.min(...this.objects.map((obj) => obj.pos.y));
        const max_y = Math.max(...this.objects.map((obj) => obj.pos.y));
        const width = max_x - min_x;
        const height = max_y - min_y;
        return new Vector(width, height);
    }

    remove(object) {
        let index = this.objects.indexOf(object);
        if (index !== -1) {
            this.objects.splice(index, 1);
            this.update_bounds();
        }
    }

    phase_impedance(phase) { return Math.abs(Math.sin(this.entropic_degree - phase)); }

    add(object) { this.objects.push(object); this.update_bounds(); }

    has(component) { return this.objects.includes(component); }

    clear() { this.objects = []; }

    nearby(distance) {
        const results = [];
        const worldSize = Math.sqrt(this.energy) * 4;

        for (let object of this.environment.objects) {
            if (object === this) continue;

            let directDist = this.pos.distance(object.pos);
            let wrappedDist = Math.min(
                this.pos.sub(object.pos.add(new Vector(worldSize, 0))).mag(),
                this.pos.sub(object.pos.sub(new Vector(worldSize, 0))).mag(),
                this.pos.sub(object.pos.add(new Vector(0, worldSize))).mag(),
                this.pos.sub(object.pos.sub(new Vector(0, worldSize))).mag()
            );

            if (distance > -1 && directDist > distance && wrappedDist > distance) continue;

            results.push(object);
        }
        return results;
    }

    update() {
        // Absorb energy and entropy from the environment.
        const inputData = this.absorb_entropy(
            this.environment,
            this.environment.data.energy,
            this.environment.data.entropy
        );

        if (!inputData) return; // Exit if no energy/entropy is available.
        const mediatedData = this.mediate_entropy(inputData);
        this.emit_entropy(this.environment, mediatedData.energy, mediatedData.entropy);

        let currentPowerInput = this.powerInput(time);
        let delta_E_O = this.flowFunctionF(this.data.energy, this.environment.data.energy, this.impedance());
        this.data.energy += currentPowerInput - delta_E_O;
        let delta_E_E = this.flowFunctionG(this.data.energy, this.environment.data.energy, this.impedance());
        this.environment.data.energy += delta_E_E;
        this.data.energy = Math.max(this.data.energy, 0);

        for (let object of this.objects) {
            object.update();
        }

        this.pos = this.pos.add(this.velocity.mul(this.cycle_rate)); // 'cycle_rate' can be used as a time step
        this.scale_to_bounds();
        this.update_bounds(); // Update self body (bounds, center)
        this.absorbPotentialChildren();

        this.age++; // Increment age at each update

        if (this.age >= this.lifespan) {
            this.die(); // Die if lifespan is reached
        }

        if (this.bonded) {
            this.maintainBond(); // Maintain the bond if bonded
        }

        this.currentCycle++;
        this.reproduce(); // Check for reproduction at each update
    }

    reproduce() {
        if (this.energy > 50) { // Reproduce if energy is above a certain threshold
            const offspring = new Tripole(
                this.name + '_child',
                this.environment,
                this.pos.add(Vector.random().mul(10)), // Spawn the child nearby
                this.entropy * 0.8, // Inherit a portion of the parent's entropy
                this.genetics
            );
            offspring.energy = this.energy * 0.4; // Give a portion of energy to the offspring
            this.energy *= 0.6; // Reduce the parent's energy
            offspring.mutate(); // Introduce mutations in the offspring
            this.environment.add(offspring);
        }
    }

    die() {
        this.environment.remove(this);
        if (this.bonded) {
            this.breakBond();
        }
    }

    formBond(other) {
        if (!this.bonded && !other.bonded) {
            this.bonded = true;
            this.bondedWith = other;
            other.bonded = true;
            other.bondedWith = this;
            this.bondStrength = 1;
        }
    }

    breakBond() {
        if (this.bonded) {
            this.bonded = false;
            this.bondedWith.bonded = false;
            this.bondedWith.bondStrength = 0;
            this.bondedWith = null;
            this.bondStrength = 0;
        }
    }

    maintainBond() {
        if (this.bonded) {
            const distance = this.pos.distance(this.bondedWith.pos);
            const maxDistance = 50;

            if (distance > maxDistance) {
                this.breakBond();
            } else {
                const bondForce = Vector.sub(this.bondedWith.pos, this.pos).normalize().mul(0.1);
                this.applyForce(bondForce);
                this.bondedWith.applyForce(bondForce.mul(-1));
                this.bondStrength = Math.min(this.bondStrength + 0.01, 1);
            }
        }
    }

    update_bounds() {
        if (!this.objects.length) return;
        const positions = this.objects.map((object) => object.pos);
        const min_x = Math.min(...positions.map((pos) => pos.x));
        const max_x = Math.max(...positions.map((pos) => pos.x));
        const min_y = Math.min(...positions.map((pos) => pos.y));
        const max_y = Math.max(...positions.map((pos) => pos.y));
        const width = max_x - min_x;
const height = max_y - min_y;
const center = new Vector(min_x + width / 2, min_y + height / 2);
this.scale_to_bounds();
this._position = center;
    }

    render(ctx, parentRadius = null, parentPosition) {
        const radius = this.energy * this.energy;
        const drawRadius = radius;
        const pos = parentPosition ? parentPosition.add(this.pos) : this.pos;
        ctx.beginPath();
        ctx.arc(pos.x * __scale / 2, pos.y * __scale / 2, Math.sqrt(radius * __scale), 0, Math.PI * 2);
        ctx.fillStyle = this.color();
        ctx.fill();
        this.objects.forEach(child => {
            child.render(ctx, Math.sqrt(radius), this.pos);
        });
        this.particleSystem.render(ctx);
    }

    mediate_entropy(sensor_data) {
        const phase_impedance = this.phase_impedance(this.entropic_degree);
        if (sensor_data.energy > 0) {
            let entropyRotation = this.calculate_entropy_rotation(sensor_data.entropy);
            this._entropic_degree = (this.entropic_degree + entropyRotation) % 360;
        }
        if (to instanceof Environment) {
            to.absorb_entropy(this, energy, sensor_data.entropy);
            this.data.energy -= energy;
            to.data.energy += energy;
            to._entropic_degree = this.entropic_degree;
        }
        return {
            energy: sensor_data.energy / (phase_impedance < 0.01 ? 0.01 : phase_impedance),
            entropy: sensor_data.entropy / (phase_impedance < 0.01 ? 0.01 : phase_impedance)
        };
    }

    absorb_entropy(from, energy, entropy) {
        if (from === this || this.objects.includes(from)) return;
        if (from instanceof Environment) {
            const absorbedEnergy = from.emit_entropy(this, energy, entropy);
            this.data.energy += absorbedEnergy;
            from.data.energy -= absorbedEnergy;
            this._entropic_degree = from.entropic_degree;
            return { energy: absorbedEnergy, entropy: 0 };
        }
        const availableEnergy = Math.min(from.data.energy, energy);
        const availableEntropy = Math.min(from.data.entropy, entropy);
        from.data.energy -= availableEnergy;
        from.data.entropy -= availableEntropy;
        this.data.energy += availableEnergy;
        this.data.entropy += availableEntropy;
        this._entropic_degree = from.entropic_degree;

        let distance = this.pos.distance(from.pos);
        let isTouching = distance < this.radius + from.radius;
        let isInside = this.environment === from.environment;

        if (isTouching && isInside) {
            const overlap = this.radius + from.radius - distance;
            const direction = this.pos.sub(from.pos).norm();
            const correction = direction.mul(overlap / 64);
            const _from = (from.energy / from.entropy) < (this.energy / this.entropy) ? from : this;
            const _to = (from.energy / from.entropy) < (this.energy / this.entropy) ? this : from;
            if (_from.energy > 0) _from.emit_entropy(_to, 1, 1 * from.energy / from.entropy);
            while (isTouching) {
                this.pos = this.pos.add(correction);
                from.pos = from.pos.sub(correction);
                distance = this.pos.distance(from.pos);
                isTouching = distance <= this.radius + from.radius;
                this.data.entropy += .001;
                this.particleSystem.emit(
                    this.pos,
                    from.pos.sub(this.pos).norm().mul(1 / distance * distance), // Particle velocity coming from the other tripole
                    10000,
                    'rgba(0, 255, 0, 1)'
                );
            }
        }
        // affected by distance
        const newPos = this.pos.add(from.pos.sub(this.pos).norm().mul(1 / distance));
        if (newPos.x == newPos.x && newPos.y == newPos.y) {
            this.pos = this.pos.add(from.pos.sub(this.pos).norm().mul(1 / distance * 16));
        }
        // Emitting particles representing the transfer
        this.particleSystem.emit(
            this.pos,
            from.pos.sub(this.pos).norm().mul(-1 / distance * distance * distance), // Particle velocity coming from the other tripole
            6000, // Lifetime of the particles
            'rgba(255, 0, 255, 1)' // Bluish color for entropy particle
        );
        this.particleSystem.update();
    }

    calculate_entropy_rotation(addedEntropy) {
        const maxEntropyDegree = 180;
        let totalEntropy = this.data.entropy + addedEntropy;
        const a = 6 / maxEntropyDegree;
        const b = 4;
        let initialDegree = maxEntropyDegree - maxEntropyDegree / (1 + Math.exp(-a * (this.data.entropy - maxEntropyDegree * b / 100)));
        let finalDegree = maxEntropyDegree - maxEntropyDegree / (1 + Math.exp(-a * (totalEntropy - maxEntropyDegree * b / 100)));
        let entropyRotation = finalDegree - initialDegree;
        entropyRotation = Math.max(0, Math.min(entropyRotation, maxEntropyDegree));
        return entropyRotation;
    }

    emit_entropy(to, energy, entropy) {
        if (this === to || this.objects.includes(to)) return;

        const availableEnergy = Math.min(this.data.energy, energy);
        const availableEntropy = Math.min(this.data.entropy, entropy);
        const distance = this.pos.distance(to.pos);
        const impedance = this.impedance();
        const scale = 1 / (distance * impedance);
        this.data.energy -= availableEnergy * scale;
        this.data.entropy -= availableEntropy * scale;
        to.data.energy += availableEnergy * scale;
        to.data.entropy += availableEntropy * scale;
        to._entropic_degree = this.entropic_degree;
        this.particleSystem.emit(
            this.pos,
            to.pos.sub(this.pos).norm().mul(1 / distance * distance), // Particle velocity coming from the other tripole
            6000, // Lifetime of the particles
            `rgba(${this.genetics.color.r}, ${this.genetics.color.g}, ${this.genetics.color.b}, ${entropy / this.getMaxEntropy()})` // Color based on entropy emission
        );
        return energy * scale;
    }

    // Should be called after updating the bounds of the parent tripole.
    scale_to_bounds() {
        const parentWorldSize = Math.sqrt(this.energy) * 4;
        const scale = parentWorldSize / Math.max(this.bounds.x, this.bounds.y, 1);
        for (let child of this.objects) {
            const relativePos = child.pos.sub(this.pos);
            const scaledPos = relativePos.mul(scale).add(this.pos);
            child.data.energy *= scale * scale;
            child.pos = scaledPos;
        }
    }

    // An absorption check which calls 'absorb' if another tripole is small enough.
    absorbPotentialChildren() {
        for (let i = this.objects.length - 1; i >= 0; i--) {
            let child = this.objects[i];
            if (this.energy > child.energy * 1.5) {
                this.absorb(child);
            }
        }
    }

    absorb(child) {
        this.data.energy += child.energy;
        this.data.entropy += child.entropy;
        const index = this.objects.indexOf(child);
        if (index !== -1) {
            this.objects.splice(index, 1);
            this.objects.push(...child.objects);
            child.clear(); // Clear the absorbed tripole's objects.
        }

        this.update_bounds(); // Update bounds and pos.
    }

    color() {
        const entropyRatio = this.data.entropy / this.getMaxEntropy(); // Relative entropy
        const energyRatio = this.data.energy / this.getMaxEnergy(); // Relative energy
        const hue = (1 - entropyRatio * 2) * 360; // Inverse so higher entropy is cooler (toward blue)
        let lightness = 110 + (energyRatio - 0.9) * 20; // Energy affects lightness
        lightness = Math.min(100, Math.max(0, lightness)); // Clamp lightness between 0% and 100%
        const saturation = 256; // Full saturation for vivid colors
        return `hsla(${hue}, ${saturation}%, ${lightness}%,${lightness / 256})`;
    }

    getMaxEntropy() { return 100; }
    getMaxEnergy() { return 80; }
    powerInput(time) { return 1 + Math.sin(time / 10); }
    impedance() { return 0.75; }

    flowFunctionF(E_O, E_E, Z) {
        return (E_E - E_O) * (1 - Z);
    }

    flowFunctionG(E_O, E_E, Z) {
        return (E_O - E_E) * Z;
    }

    applyForce(force) {
        const acceleration = force.div(this.mass);
        this.velocity = this.velocity.add(acceleration);
    }
}

class PopulationManager {
    constructor(environment) {
        this.environment = environment;
        this.generation = 0;
        this.evaluationInterval = 100; // Check the population every 100 frames.
        this.optimizeInterval = 500; // Introduce new tripoles every 1000 frames.
        this.frameCount = 0;
        this.population = 0;
        this.minimumPopulation = 500;
    }

    run() {
        this.frameCount++;
        this.population = this.environment.objects.length;
        if (this.frameCount % this.optimizeInterval === 0) {
            const selectedTripoles = this.selection();
            if (selectedTripoles.length > 1) { 
                this.optimize(selectedTripoles);
            }
        }
    }

    selection() {
        const selectionCutoff = 0.05;
        const sortedTripoles = this.environment.objects
                                .map(tripole => {
                                    tripole.calculateFitness();
                                    return tripole;
                                })
                                .sort((a, b) => b.fitness - a.fitness);
        const selectedCount = Math.floor(this.environment.objects.length * selectionCutoff);
        return sortedTripoles.slice(0, selectedCount);
    }
    
    // optimize tripole fitness by mutating and crossing over the selected tripole. the tripole is updated with the new genetics
    // and the historical genetics are saved along with the fitness. Every 1000 frames, the highest fitness tripole genetics are
    // kept and the rest are discarded.
    optimize(selectedTripoles) {
        if (this.frameCount % 100 === 0) {
            for (let i = 0; i < selectedTripoles.length; i++) {
                const parentA = selectedTripoles[i];
                for (let j = i + 1; j < selectedTripoles.length; j++) {
                    const parentB = selectedTripoles[j];
                    const child = Tripole.crossover(parentA, parentB)
                    parentA.historical_fitness.push({fitness: parentA.fitness, genetics: parentA.genetics});
                    parentB.historical_fitness.push({fitness: parentB.fitness, genetics: parentB.genetics});
                    parentA.genetics = child;
                    parentB.genetics = child;
                }
                parentA.mutate();
            }
            // every 1000 frames, keep the highest fitness tripole genetics and discard the rest

            const selectionCutoff = 0.1;
            const sortedTripoles = this.environment.objects
                                    .map(tripole => {
                                        tripole.calculateFitness();
                                        return tripole;
                                    })
                                    .sort((a, b) => b.fitness - a.fitness);
            const selectedCount = Math.floor(this.environment.objects.length * selectionCutoff);
            const _selectedTripoles = sortedTripoles.slice(0, selectedCount);
            for (let i = 0; i < _selectedTripoles.length; i++) {
                const parentA = _selectedTripoles[i];
                for (let j = i + 1; j < _selectedTripoles.length; j++) {
                    const parentB = _selectedTripoles[j];
                    const child = Tripole.crossover(parentA, parentB)
                    parentA.genetics = child;
                    parentB.genetics = child;
                }
                parentA.mutate();
            }
        }
        this.generation++;
    }
    runGeneration() {
        const selectedTripoles = this.selection();
        this.optimize(selectedTripoles);
    }
}

class Entropy extends Tripole {
    constructor(environment, pos, energy, entropy) {
        super('entropy', environment, pos, entropy);
        this.data.energy = energy;
    }
}

class WhiteHole extends Tripole {
    constructor(environment, pos, emissionRate) {
        super('white_hole', environment, pos);
        this.emissionRate = emissionRate; // Rate at which the white hole emits low-entropy energy
    }
    
    emitEnergy() {
        for (let object of this.environment.objects) {
            if (object !== this && object.energy / object.entropy > this.energy / this.entropy) {
                object.absorb_entropy(this, this.emissionRate);
                break;
            }
        }
    }
    
    update() {
        this.emitEnergy();
    }

    render(ctx) {
        ctx.beginPath();
        ctx.arc(this.pos.x, this.pos.y, 30, 0, Math.PI * 2);
        ctx.strokeStyle = 'rgba(255, 255, 255, 0.1)';
        ctx.stroke();
        ctx.closePath();

        const radialGradient = ctx.createRadialGradient(this.pos.x, this.pos.y, 0, this.pos.x, this.pos.y, 15);
        radialGradient.addColorStop(0, 'rgba(255, 255, 255, 0.1)');
        radialGradient.addColorStop(1, 'rgba(255, 255, 255, 0)');

        ctx.beginPath();
        ctx.arc(this.pos.x, this.pos.y, this.energy * 4, 0, Math.PI * 2);
        ctx.fillStyle = radialGradient;
        ctx.fill();
        ctx.closePath();
    }
}

class BlackHole extends Tripole {
    constructor(environment, pos, attractionStrength) {
        super('black_hole', environment, pos);
        this.attractionStrength = attractionStrength; // Strength of attraction, intensity of absorbing high-entropy energy
    }
    
    attractEnergy() {
        for (let object of this.environment.objects) {
            if (object !== this && object.energy / object.entropy < this.energy / this.entropy) {
                this.absorb_entropy(object, this.attractionStrength);
            }
        }
    }
    
    update() {
        this.attractEnergy();
    }

    render(ctx) {
        // Draw the absorption field or gravitational pull area
        ctx.beginPath();
        ctx.arc(this.pos.x, this.pos.y, this.energy / 4, 0, Math.PI * 2);
        ctx.strokeStyle = 'rgba(0, 0, 0, 0.9)';
        ctx.stroke();
        ctx.closePath();

        // Draw the black hole itself
        const radialGradient = ctx.createRadialGradient(this.pos.x, this.pos.y, 0, this.pos.x, this.pos.y, this.radius);
        radialGradient.addColorStop(0, 'rgba(0, 0, 0, 1)');
        radialGradient.addColorStop(1, 'rgba(51, 51, 51, 0)');

        ctx.beginPath();
        ctx.arc(this.pos.x, this.pos.y, this.energy / 4, 0, Math.PI * 2);
        ctx.fillStyle = radialGradient;
        ctx.fill();
        ctx.closePath();

        // draw a golden ring around the black hole
        ctx.beginPath();
        ctx.arc(this.pos.x, this.pos.y, this.energy / 4, 0, Math.PI * 2);
        ctx.strokeStyle = 'rgba(255, 215, 0, 0.8)';
        ctx.stroke();
    }

}

class Environment extends Tripole {

    constructor(totalEnergy) {
        super('environment', null, null, null, null);
        this.totalEnergy = totalEnergy;
        this.data.energy = totalEnergy;
        this.data.entropy = 1;
    }


    render(ctx) {
        // draw a circle to represent the environment
        for (let object of this.objects) {
            object.render(ctx, this.energy, object.pos);
        }
        // whiteHole.render(ctx);
        // blackHole.render(ctx);
    }

    renderObjects(ctx, parentPosition, parentScale) {
        // this is done recursively
        for (let object of this.objects) {
            object.render(ctx, object.pos, parentScale);
        }
    }

    receiveEnergy(energyInput) {
        this.data.energy += energyInput;
        let propulsionStrength = energyInput; // Arbitrary example value
        this.velocity.x += propulsionStrength;
    };

    check_energy_balance() {
        const tripolesEnergy = this.objects.reduce((sum, obj) => sum + obj.energy, 0);
        const energyMismatch = this.totalEnergy - tripolesEnergy;
        console.log(`Energy Discrepancy: ${energyMismatch.toFixed(2)}`);
        if (energyMismatch !== 0) {
            console.error("Energy is not conserved in the system.");
        }
    }
}

class Particle {
    constructor(pos, velocity, lifetime, color) {
        this.pos = pos;
        this.velocity = velocity;
        this.lifetime = 30;
        this.color = color;
        this.alive = true;
    }

    update() {
        if (!this.alive) return;

        this.pos = this.pos.add(this.velocity);
        this.lifetime--;

        if (this.lifetime <= 0) {
            this.alive = false;
        }
    }

    render(ctx) {
        if (!this.alive) return;

        ctx.beginPath();
        ctx.arc(this.pos.x * __scale, this.pos.y * __scale, 1, 0, Math.PI * 2);
        ctx.fillStyle = this.color;
        ctx.fill();
    }
}

class ParticleSystem {
    constructor() {
        this.particles = [];
    }

    emit(pos, velocity, lifetime, color) {
        if(this.particles.length>50) return;
        this.particles.push(new Particle(pos, velocity, lifetime, color));
    }

    update() {
        this.particles = this.particles.filter(p => p.alive);
        this.particles.forEach(p => p.update());
    }

    render(ctx) {
        this.particles.forEach(p => p.render(ctx));
    }
}

function createTripole() {
    let tripole = new Tripole('bob', environment, new Vector(Math.random() * canvas.width, Math.random() * canvas.height));
    tripole.data.energy = Math.random() * 5
    tripole.data.entropy = .01
    tripole.sensor = new Tripole('sensor', tripole, tripole.pos);
    tripole.sensor.data.energy = Math.random() * 5
    tripole.sensor.data.entropy = .01
    tripole.actuator = new Tripole('actuator', tripole, tripole.pos);
    tripole.actuator.data.energy = Math.random() * 5
    tripole.actuator.data.entropy = .01
    tripole.data.energy = Math.random() * 5
    tripole.data.entropy = .1
    return tripole
}

const environment = new Environment(500);
environment.environment = environment;
let populationManager = new PopulationManager(environment);

const whiteHole = new WhiteHole(environment, new Vector(100, canvas.height / 2), 5);
const blackHole = new BlackHole(environment, new Vector(canvas.width - 100, canvas.height / 2), 5);

let tripoles = []
for (let i = 0; i < 50; i++) {
    tripoles.push(createTripole())
}

function calculateTotalSystemEnergy(environment) {
    return environment.energy
}

function handleTripoleInteractions() {
    for (let i = 0; i < environment.objects.length; i++) {
        let tripoleA = environment.objects[i];
        for (let j = i + 1; j < environment.objects.length; j++) {
            let tripoleB = environment.objects[j];
            if (tripoleA === tripoleB) continue;
            tripoleInteraction(tripoleA, tripoleB);
        }
    }
}

function tripoleInteraction(tripoleA, tripoleB) {
    // Calculate the distance between the two tripoles
    let distance = tripoleA.pos.distance(tripoleB.pos);

    // Check if the tripoles are touching
    let isTouching = distance < tripoleA.radius + tripoleB.radius;

    // Check if the tripoles are in the same environment
    let isInside = tripoleA.environment === tripoleB.environment;

    // If the tripoles are touching and in the same environment, repel them
    if (isTouching && isInside) {
        // Calculate the overlap distance
        const overlap = tripoleA.radius + tripoleB.radius - distance;

        // Calculate the direction of repulsion
        const direction = tripoleA.pos.sub(tripoleB.pos).norm();

        // Calculate the amount of correction to repel the tripoles
        let correction = direction.mul(overlap / 4);

        // Apply the correction to both tripoles
        tripoleA.pos = tripoleA.pos.add(correction);
        tripoleB.pos = tripoleB.pos.sub(correction);

        // Example elastic collision response assuming equal mass and a head-on collision
        let velocityA = tripoleA.velocity;
        let velocityB = tripoleB.velocity;

        tripoleA.velocity = velocityB; // For a simple elastic collision with equal mass
        tripoleB.velocity = velocityA; // Swap velocities

        // Now, slightly shift them apart based on collision depth to avoid sticking together
        correction = direction.mul(overlap / 4); // Use overlap to push apart by half the overlap distance for each
        tripoleA.pos = tripoleA.pos.add(correction);
        tripoleB.pos = tripoleB.pos.sub(correction);

        tripoleA.particleSystem.emit(
            tripoleA.pos,
            tripoleB.pos.sub(tripoleA.pos).norm().mul(-2 * tripoleA.radius), // Particle velocity towards the other tripole
            6000, // Lifetime of the particles
            'rgba(0, 0, 215, 1)' // Bluish color for energy particle
        );
        tripoleB.particleSystem.emit(
            tripoleB.pos,
            tripoleA.pos.sub(tripoleB.pos).norm().mul(2 * tripoleB.radius), // Particle velocity towards the other tripole
            6000, // Lifetime of the particles
            'rgba(215, 0, 0, 1)' // Reddish color for energy particle
        );

        tripoleA.particleSystem.update();
        tripoleB.particleSystem.update();

        // Emit energy from the larger tripoles to the smaller one
        const _from = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleA : tripoleB;
        const _to = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleB : tripoleA;
        if (_from.energy > 0) _from.emit_entropy(_to, 1.0001 / distance ** 2, 1.0001 / distance ** 2 * _from.energy / _from.entropy);
    } else if (distance < 100) {
        // Emit energy from the larger tripoles to the smaller one
        const _from = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleA : tripoleB;
        const _to = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleB : tripoleA;
        if (_from.energy > 0) _to.absorb_entropy(_from, 1.0001 / distance ** 2, 1.0001 / distance ** 2 * _from.energy / _from.entropy);
    } else if (distance > 100) {
        // Emit energy from the larger tripoles to the smaller one
        const _from = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleA : tripoleB;
        const _to = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleB : tripoleA;
        if (_from.energy > 0) {
            _from.emit_entropy(_to, 1 / distance ** 2, 1 / distance ** 2 * _from.energy / _from.entropy);
             _to.absorb_entropy(_from, 1 / distance ** 2, 1 / distance ** 2 * _from.energy / _from.entropy);
        } else {
            _to.emit_entropy(_from, 1 / distance ** 2, 1 / distance ** 2 * _from.energy / _from.entropy);
            _from.absorb_entropy(_to, 1 / distance ** 2, 1 / distance ** 2 * _from.energy / _from.entropy);
        }
    } else if (distance > 200) {
        // Emit energy from the larger tripoles to the smaller one
        const _from = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleA : tripoleB;
        const _to = (tripoleA.energy / tripoleA.entropy) < (tripoleB.energy / tripoleB.entropy) ? tripoleB : tripoleA;
        if (_from.energy > 0) {
            _from.emit_entropy(_to, 0.01 / distance ** 2, 0.01 / distance ** 2 * _from.energy / _from.entropy);
        } else {
            _to.emit_entropy(_from, 0.01 / distance ** 2, 0.01 / distance ** 2 * _from.energy / _from.entropy);
        }
    } else {
        // Emit energy from the larger tripoles to the smaller one
        const _from = (tripoleA.energy) < (tripoleB.energy) ? tripoleA : tripoleB;
        const _to = (tripoleA.energy) < (tripoleB.energy) ? tripoleB : tripoleA;
        if (_from.energy > 0) {
            _from.emit_entropy(_to, _from.energy / distance, _from.energy / distance);
        } else {
            _to.emit_entropy(_from, _to.energy / distance, _to.energy / distance);
        }
    }
}


function render() {
    ctx.fillStyle = 'rgba(48,48,48, .1)';
    ctx.fillRect(0, 0, ctx.canvas.width * __scale, ctx.canvas.height * __scale); // Clear the canvas for the new frame

    // Handle the physics and interactions for all tripoles
    handleTripoleInteractions();

    environment.update(); // Execute the update logic for the environment and each tripoles
    whiteHole.update();
    blackHole.update();
    environment.render(ctx); // Render the updated state of the environment and tripoles


    populationManager.run();

    requestAnimationFrame(render); // Schedule the next frame
}
canvas.style.backgroundColor = '#fff';
render();
ctx.scale(1/__scale,1/__scale)




              
            
!
999px

Console