Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <canvas id="canvas"></canvas>

<p class="collection">
<a href="https://codepen.io/collection/AGZywR" target="_blank">WebGL Collection</a>
</p>
              
            
!

CSS

              
                html, body {
  margin: 0;
  height: 100%;
  overflow: hidden;
}

body {
  background-image: radial-gradient(circle, #73aad6, #003962, #000);
}

              
            
!

JS

              
                function App() {
  const conf = {
    el: 'canvas',
    fov: 50,
    cameraZ: 400,
  };

  const { WebGLRenderer, PerspectiveCamera, OrbitControls, AmbientLight, DirectionalLight, Scene } = THREE;
  const { Object3D, CylinderGeometry, IcosahedronGeometry, SphereGeometry, MeshLambertMaterial, Mesh, Vector3 } = THREE;
  const { randFloat: rnd, randFloatSpread: rndFS } = THREE.Math;
  const { random, PI } = Math;
  const simplex = new SimplexNoise();

  let renderer, scene, camera, cameraCtrl;
  let width, height;
  let planet;

  init();

  function init() {
    renderer = new WebGLRenderer({ canvas: document.getElementById(conf.el), antialias: true, alpha: true });
    camera = new PerspectiveCamera(conf.fov);
    camera.position.z = conf.cameraZ;
    cameraCtrl = new OrbitControls(camera, renderer.domElement);
    cameraCtrl.enableDamping = true;
    cameraCtrl.dampingFactor = 0.1;
    cameraCtrl.rotateSpeed = 0.1;
    cameraCtrl.autoRotate = true;
    cameraCtrl.autoRotateSpeed = 0.1;

    updateSize();
    window.addEventListener('resize', updateSize, false);

    initScene();
    animate();
  }

  function initScene() {
    scene = new Scene();
    scene.add(new AmbientLight(0xcccccc));

    const light = new DirectionalLight(0xffffff);
    light.position.x = 200;
    light.position.z = 100;
    scene.add(light);

    // planet
    planet = new Object3D();
    scene.add(planet);

    // noise buffer for faces colors
    const noises = [];

    // noise conf
    const noiseF = 0.015;
    const noiseD = 15;
    const noiseWaterTreshold = 0.4;
    const noiseWaterLevel = 0.2;

    // noise function
    const vNoise = (v, f, i) => {
      const nv = new Vector3(v.x, v.y, v.z).multiplyScalar(f);
      let noise = (simplex.noise3D(nv.x, nv.y, nv.z) + 1) / 2;
      noise = (noise > noiseWaterTreshold) ? noise : noiseWaterLevel;
      if (Number.isInteger(i)) noises[i] = noise;
      return noise;
    };

    // displacement function
    const dispV = (v, i) => {
      const dv = new Vector3(v.x, v.y, v.z);
      dv.add(dv.clone().normalize().multiplyScalar(vNoise(dv, noiseF, i) * noiseD));
      v.x = dv.x; v.y = dv.y; v.z = dv.z;
    };

    // planet geometry
    let geometry, material, mesh;
    geometry = new IcosahedronGeometry(100, 4);
    for (let i = 0; i < geometry.vertices.length; i++) dispV(geometry.vertices[i], i);
    geometry.computeFlatVertexNormals();

    // planet geometry - faces colors
    for (let i = 0; i < geometry.faces.length; i++) {
      let f = geometry.faces[i];
      f.color.setHex(0x417B2B);
      if (noises[f.a] == noiseWaterLevel && noises[f.b] == noiseWaterLevel && noises[f.c] == noiseWaterLevel) {
        f.color.setHex(0x2080D0);
      }
    }

    // planet mesh
    material = new MeshLambertMaterial({ flatShading: true, vertexColors: THREE.VertexColors });
    mesh = new Mesh(geometry, material);
    planet.add(mesh);

    // start anim
    planet.scale.set(0.3, 0.3, 0.3);
    TweenMax.to(planet.scale, rnd(2, 5), { x: 1, y:1, z:1, ease: Power1.easeOut });

    // add trees & rocks
    objects = [];
    const cscale = chroma.scale([0x509A36, 0xFF5A36, 0x509A36, 0xFFC236, 0x509A36]);
    const points = getFibonacciSpherePoints(800, 100);
    let p, obj;
    for (let i = 0; i < points.length; i++) {
      p = points[i];
      dispV(p);
      if (vNoise(p, noiseF) == noiseWaterLevel) continue;
      if (random() > 0.3) {
        const tsize = rnd(5, 15);
        const bsize = tsize * rnd(0.5, 0.7);
        const vn2 = vNoise(p, 0.01);
        obj = createTree(tsize, bsize, 0x764114, cscale(vn2).hex());
        obj.position.set(p.x, p.y, p.z);
        obj.lookAt(0, 0, 0);
      } else {
        obj = createRock(rnd(2, 4));
        obj.position.set(p.x, p.y, p.z);
      }
      objects.push(obj);
      obj.scale.set(0.01, 0.01, 0.01);
      obj.tween = TweenMax.to(obj.scale, rnd(3, 10), { x: 1, y:1, z: 1, ease:  Elastic.easeOut.config(1, 0.2), delay: rnd(0, 4)});
      planet.add(obj);
    }
    
    // interactivity
    const mouse = new THREE.Vector2();
    const raycaster = new THREE.Raycaster();
    const onMouseMove = e => {
      mouse.x = (e.clientX / width) * 2 - 1;
      mouse.y = - (e.clientY / height) * 2 + 1;
      raycaster.setFromCamera(mouse, camera);
      const intersects = raycaster.intersectObjects(objects, true);
      if (intersects.length>0) {
        let obj = intersects[0].object;
        obj = obj.tween ? obj : obj.parent;
        if (!obj.tween.isActive()) {
          obj.scale.set(0.5, 0.5, 0.5);
          obj.tween = TweenMax.to(obj.scale, 1.5, { x: 1, y: 1, z: 1, ease: Elastic.easeOut.config(1, 0.2) });
        }
      }
    };
    renderer.domElement.addEventListener('mousemove', onMouseMove);
  }

  // low poly tree
  function createTree(tsize, bsize, tcolor, bcolor) {
    const tradius = tsize * 0.1;
    const t1size = tsize / 2, t1radius = tradius * 0.7;

    const tmaterial = new MeshLambertMaterial({ color: tcolor, flatShading: true });
    const bmaterial = new MeshLambertMaterial({ color: bcolor, flatShading: true });

    const tree = new Object3D();

    // trunk
    const tgeometry = new CylinderGeometry(tradius * 0.7, tradius, tsize, 5, 3, true);
    tgeometry.translate(0, tsize / 2, 0);
    tgeometry.rotateX(-PI / 2);
    rdnGeo(tgeometry, tradius * 0.2);
    const tmesh = new Mesh(tgeometry, tmaterial);
    tree.add(tmesh);

    // body
    const bgeometry = new SphereGeometry(bsize, 4, 4);
    bgeometry.translate(0, tsize + bsize * 0.7, 0);
    bgeometry.rotateX(-PI / 2);
    rdnGeo(bgeometry, bsize * 0.2);
    const bmesh = new Mesh(bgeometry, bmaterial);
    tree.add(bmesh);

    if (random() > 0.5) {
      // trunk 1
      const t1geometry = new CylinderGeometry(t1radius * 0.5, t1radius, t1size, 4, 2, true);
      t1geometry.translate(0, t1size / 2, 0);
      t1geometry.rotateZ(PI / 3 + rnd(0, 0.2));
      t1geometry.rotateY(rndFS(PI / 2));
      t1geometry.translate(0, tsize * rnd(0.2, 0.7), 0);
      t1geometry.rotateX(-PI / 2);
      rdnGeo(t1geometry, tradius * 0.1);
      tgeometry.merge(t1geometry);

      // body 1
      const b1size = bsize * rnd(0.5, 0.8);
      const t1bp = getTrunkBodyPosition(t1geometry, b1size);
      const b1geometry = new SphereGeometry(b1size, 4, 4);
      b1geometry.translate(t1bp.x, t1bp.y, t1bp.z);
      rdnGeo(b1geometry, b1size * 0.2);
      bgeometry.merge(b1geometry);
    }

    if (random() > 0.5) {
      // trunk 2
      const t2geometry = new CylinderGeometry(t1radius * 0.5, t1radius, t1size, 4, 2, true);
      t2geometry.translate(0, t1size / 2, 0);
      t2geometry.rotateZ(-PI / 3 + rnd(0, 0.2));
      t2geometry.rotateY(rndFS(PI / 2));
      t2geometry.translate(0, tsize * rnd(0.2, 0.7), 0);
      t2geometry.rotateX(-PI / 2);
      rdnGeo(t2geometry, tradius * 0.1);
      tgeometry.merge(t2geometry);

      // body 2
      const b2size = bsize * rnd(0.5, 0.8);
      const t2bp = getTrunkBodyPosition(t2geometry, b2size);
      const b2geometry = new SphereGeometry(b2size, 4, 4);
      b2geometry.translate(t2bp.x, t2bp.y, t2bp.z);
      rdnGeo(b2geometry, b2size * 0.2);
      bgeometry.merge(b2geometry);
    }

    return tree;
  }

  // low poly rock
  function createRock(size) {
    const material = new MeshLambertMaterial({ color: 0x808080, flatShading: true });
    const geometry = new SphereGeometry(size, 5, 4);
    rdnGeo(geometry, size * 0.2);
    return new Mesh(geometry, material);
  }

  // trunk helper
  function getTrunkBodyPosition(geo, bsize) {
    let v1 = geo.vertices[0], v2 = geo.vertices[geo.vertices.length - 1];
    v1 = new Vector3(v1.x, v1.y, v1.z);
    v2 = new Vector3(v2.x, v2.y, v2.z);
    const dv = v1.clone().sub(v2).normalize().multiplyScalar(bsize * 0.5);
    return v1.add(dv);
  }

  // randomize geometry
  function rdnGeo(geo, d) {
    let v;
    for (let i=0; i<geo.vertices.length;i++) {
      v = geo.vertices[i];
      v.x += rndFS(2 * d);
      v.y += rndFS(2 * d);
      v.z += rndFS(2 * d);
    }
    geo.computeFlatVertexNormals();
  }

  function animate() {
    requestAnimationFrame(animate);
    if (cameraCtrl) cameraCtrl.update();
    renderer.render(scene, camera);
  }

  function updateSize() {
    width = window.innerWidth;
    height = window.innerHeight;
    renderer.setSize(width, height);
    camera.aspect = width / height;
    camera.updateProjectionMatrix();
  }
}

function getFibonacciSpherePoints(samples, radius, randomize) {
  samples = samples || 1;
  radius = radius || 1;
  randomize = randomize || true;
  let random = 1;
  if (randomize) {
    random = Math.random() * samples;
  }
  let points = []
  let offset = 2 / samples
  let increment = Math.PI * (3 - Math.sqrt(5));
  for (let i = 0; i < samples; i++) {
    let y = ((i * offset) - 1) + (offset / 2);
    let distance = Math.sqrt(1 - Math.pow(y, 2));
    let phi = ((i + random) % samples) * increment;
    let x = Math.cos(phi) * distance;
    let z = Math.sin(phi) * distance;
    x = x * radius;
    y = y * radius;
    z = z * radius;
    points.push({ x, y, z });
  }
  return points;
}

App();

              
            
!
999px

Console