Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div class="container-fluid">
  <div class="row shadow mt-5 mb-5 mr-3 ml-3">
    <div class="col-4 pt-4">
      <div id="action-group" class="list-group pt-2">
        <button type="button" class="list-group-item list-group-item-action active" name="column" onclick="updateChart(this)">
          Column Chart
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="area" onclick="updateChart(this)">
          Area Chart
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="bubble" onclick="updateChart(this)">
          Bubble Chart
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="doughnut" onclick="updateChart(this)">
          Doughnut Chart
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="sankey" onclick="updateChart(this)">
          Sankey Diagram
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="combination" onclick="updateChart(this)">
          Combination Chart
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="chord" onclick="updateChart(this)">
          Chord Diagram
        </button>
        <button type="button" class="list-group-item list-group-item-action" name="timeseries" onclick="updateChart(this)">
          Time-series Chart
        </button>
      </div>
    </div>
    <div class="col-8">
      <div id="chart-container"></div>
    </div>
  </div>
</div>
              
            
!

CSS

              
                body,
html {
  font-family: "Lato", sans-serif;
}

.shadow {
  border: 1px solid rgba(0, 0, 0, 0.05) !important;
  box-shadow: 0 6px 14px 0 rgba(33, 35, 68, 0.09) !important;
}

#chart-container {
  height: 450px;
}

button {
  outline: none !important;
}

.active {
  background: #007bff !important;
  border-color: #007bff !important;
}

.list-group-item:first-child {
  border-top-left-radius: 0.1rem !important;
  border-top-right-radius: 0.1rem !important;
}

.list-group-item:last-child {
  border-bottom-left-radius: 0.1rem !important;
  border-bottom-right-radius: 0.1rem !important;
}

              
            
!

JS

              
                const chartData = {
  column: {
    chart: {
      caption: "App Publishing Trend",
      subcaption: "2012-2016",
      xaxisname: "Years",
      yaxisname: "Total number of apps in store",
      formatnumberscale: "1",
      plottooltext:
        "<b>$dataValue</b> apps were available on <b>$seriesName</b> in $label",
      theme: "froala"
    },
    categories: [
      {
        category: [
          {
            label: "2012"
          },
          {
            label: "2013"
          },
          {
            label: "2014"
          },
          {
            label: "2015"
          },
          {
            label: "2016"
          }
        ]
      }
    ],
    dataset: [
      {
        seriesname: "iOS App Store",
        data: [
          {
            value: "125000"
          },
          {
            value: "300000"
          },
          {
            value: "480000"
          },
          {
            value: "800000"
          },
          {
            value: "1100000"
          }
        ]
      },
      {
        seriesname: "Google Play Store",
        data: [
          {
            value: "70000"
          },
          {
            value: "150000"
          },
          {
            value: "350000"
          },
          {
            value: "600000"
          },
          {
            value: "1400000"
          }
        ]
      },
      {
        seriesname: "Amazon AppStore",
        data: [
          {
            value: "10000"
          },
          {
            value: "100000"
          },
          {
            value: "300000"
          },
          {
            value: "600000"
          },
          {
            value: "900000"
          }
        ]
      }
    ]
  },
  area: {
    chart: {
      caption: "Twitter Mentions",
      yaxisname: "Number of mentions",
      numbersuffix: "M",
      subcaption: "(iPhone Vs Samsung)",
      yaxismaxvalue: "2",
      plottooltext:
        "$seriesName was mentioned <b>$dataValue</b> times on Twitter in $label",
      theme: "froala"
    },
    categories: [
      {
        category: [
          {
            label: "2007"
          },
          {
            label: "2008"
          },
          {
            label: "2009"
          },
          {
            label: "2010"
          },
          {
            label: "2011"
          },
          {
            label: "2012"
          },
          {
            label: "2013"
          },
          {
            label: "2014"
          },
          {
            label: "2015"
          }
        ]
      }
    ],
    dataset: [
      {
        seriesname: "iPhone",
        data: [
          {
            value: "1.90"
          },
          {
            value: "1.94"
          },
          {
            value: "1.69"
          },
          {
            value: "1.66"
          },
          {
            value: "1.43"
          },
          {
            value: "1.97"
          },
          {
            value: "1.78"
          },
          {
            value: "1.58"
          },
          {
            value: "1.55"
          }
        ]
      },
      {
        seriesname: "Samsung",
        data: [
          {
            value: "0.68"
          },
          {
            value: "0.74"
          },
          {
            value: "0.25"
          },
          {
            value: "0.64"
          },
          {
            value: "0.22"
          },
          {
            value: "0.74"
          },
          {
            value: "0.58"
          },
          {
            value: "0.15"
          },
          {
            value: "0.26"
          }
        ]
      }
    ]
  },
  bubble: {
    chart: {
      theme: "froala",
      caption: "Sales & Profit Analysis",
      subcaption: "For Last Quarter",
      xaxisminvalue: "0",
      xaxismaxvalue: "100",
      yaxisminvalue: "0",
      yaxismaxvalue: "30000",
      xaxisname: "Average Price",
      yaxisname: "Units Sold",
      plottooltext: "$name : Profit Contribution: $zvalue%",
      drawquadrant: "1",
      quadrantlabeltl: "Low Price / High Sales",
      quadrantlabeltr: "High Price / High Sales",
      quadrantlabelbl: "Low Price / Low Sales",
      quadrantlabelbr: "High Price / Low Sales",
      quadrantxval: "54",
      quadrantyval: "12000",
      quadrantlinealpha: "50",
      quadrantlinethickness: "2"
    },
    categories: [
      {
        category: [
          {
            label: "0",
            x: "0"
          },
          {
            label: "$20",
            x: "20",
            showverticalline: "1"
          },
          {
            label: "$40",
            x: "40",
            showverticalline: "1"
          },
          {
            label: "$60",
            x: "60",
            showverticalline: "1"
          },
          {
            label: "$80",
            x: "80",
            showverticalline: "1"
          },
          {
            label: "$100",
            x: "100",
            showverticalline: "1"
          }
        ]
      }
    ],
    dataset: [
      {
        data: [
          {
            x: "80",
            y: "15000",
            z: "24",
            name: "Nike"
          },
          {
            x: "60",
            y: "18500",
            z: "26",
            name: "Adidas"
          },
          {
            x: "50",
            y: "19450",
            z: "19",
            name: "Puma"
          },
          {
            x: "65",
            y: "10500",
            z: "8",
            name: "Fila"
          },
          {
            x: "43",
            y: "8750",
            z: "5",
            name: "Lotto"
          },
          {
            x: "32",
            y: "22000",
            z: "10",
            name: "Reebok"
          },
          {
            x: "44",
            y: "13000",
            z: "9",
            name: "Woodland"
          }
        ]
      }
    ],
    trendlines: [
      {
        line: [
          {
            startvalue: "20000",
            endvalue: "30000",
            istrendzone: "1",
            color: "#aaaaaa",
            alpha: "14"
          },
          {
            startvalue: "10000",
            endvalue: "20000",
            istrendzone: "1",
            color: "#aaaaaa",
            alpha: "7"
          }
        ]
      }
    ]
  },
  doughnut: {
    chart: {
      caption: "Android Distribution for our app",
      subcaption: "For all users in 2017",
      showpercentvalues: "1",
      defaultcenterlabel: "Android Distribution",
      aligncaptionwithcanvas: "0",
      captionpadding: "0",
      decimals: "1",
      plottooltext:
        "<b>$percentValue</b> of our Android users are on <b>$label</b>",
      centerlabel: "# Users: $value",
      theme: "froala"
    },
    data: [
      {
        label: "Ice Cream Sandwich",
        value: "1000"
      },
      {
        label: "Jelly Bean",
        value: "5300"
      },
      {
        label: "Kitkat",
        value: "10500"
      },
      {
        label: "Lollipop",
        value: "18900"
      },
      {
        label: "Marshmallow",
        value: "17904"
      }
    ]
  },
  sankey: {
    chart: {
      caption: "Bilateral Trade Volume",
      subcaption:
        "A Horizontal Sankey with options to configure the flow representation",
      theme: "froala",
      orientation: "horizontal",
      nodelabelposition: "start"
    },
    nodes: [
      {
        label: "Netherlands"
      },
      {
        label: "Canada"
      },
      {
        label: "Belgium"
      },
      {
        label: "Italy"
      },
      {
        label: "Mexico"
      },
      {
        label: "Russia"
      },
      {
        label: "Spain"
      },
      {
        label: "South Korea"
      },
      {
        label: "Germany"
      },
      {
        label: "China"
      },
      {
        label: "European Union"
      },
      {
        label: "Japan"
      },
      {
        label: "United Kingdom"
      },
      {
        label: "United States"
      },
      {
        label: "France"
      },
      {
        label: "Hong Kong"
      },
      {
        label: "Switzerland"
      },
      {
        label: "Austria"
      },
      {
        label: "Sweden"
      }
    ],
    links: [
      {
        from: "Netherlands",
        to: "European Union",
        value: 798744
      },
      {
        from: "Germany",
        to: "European Union",
        value: 1468990
      },
      {
        from: "European Union",
        to: "France",
        value: 745931
      },
      {
        from: "European Union",
        to: "United States",
        value: 660541
      },
      {
        from: "Canada",
        to: "United States",
        value: 594546
      },
      {
        from: "Belgium",
        to: "European Union",
        value: 628796
      },
      {
        from: "China",
        to: "Hong Kong",
        value: 400571
      },
      {
        from: "China",
        to: "United States",
        value: 526454
      },
      {
        from: "European Union",
        to: "United Kingdom",
        value: 520318
      },
      {
        from: "China",
        to: "European Union",
        value: 560536
      },
      {
        from: "Italy",
        to: "European Union",
        value: 539556
      },
      {
        from: "Mexico",
        to: "United States",
        value: 492715
      },
      {
        from: "Russia",
        to: "European Union",
        value: 385778
      },
      {
        from: "Spain",
        to: "European Union",
        value: 365191
      },
      {
        from: "China",
        to: "Japan",
        value: 312062
      },
      {
        from: "European Union",
        to: "Switzerland",
        value: 328609
      },
      {
        from: "South Korea",
        to: "China",
        value: 229073
      },
      {
        from: "European Union",
        to: "Austria",
        value: 244913
      },
      {
        from: "Japan",
        to: "United States",
        value: 206091
      },
      {
        from: "European Union",
        to: "Sweden",
        value: 204849
      },
      {
        from: "Germany",
        to: "United States",
        value: 184287
      }
    ]
  },
  combination: {
    chart: {
      caption: "Revenue, Profits & Number of employees",
      drawcrossline: "1",
      yaxisname: "Revenue / Profit (in $)",
      syaxisname: "Number of employees",
      showvalues: "0",
      showanchors: "0",
      numberprefix: "$",
      plothighlighteffect: "fadeout",
      theme: "froala"
    },
    categories: [
      {
        category: [
          {
            label: "Mar-2012"
          },
          {
            label: "Jun-2012"
          },
          {
            label: "Sept-2012"
          },
          {
            label: "Dec-2012"
          },
          {
            label: "Mar-2013"
          },
          {
            label: "Jun-2013"
          },
          {
            label: "Sept-2013"
          },
          {
            label: "Dec-2013"
          },
          {
            label: "Mar-2014"
          },
          {
            label: "Jun-2014"
          },
          {
            label: "Sept-2014"
          },
          {
            label: "Dec-2014"
          },
          {
            label: "Mar-2015"
          },
          {
            label: "Jun-2015"
          },
          {
            label: "Sept-2015"
          },
          {
            label: "Dec-2015"
          },
          {
            label: "Mar-2016"
          },
          {
            label: "Jun-2016"
          },
          {
            label: "Sept-2016"
          },
          {
            label: "Dec-2016"
          },
          {
            label: "Mar-2017"
          },
          {
            label: "Jun-2017"
          }
        ]
      }
    ],
    dataset: [
      {
        seriesname: "Revenue",
        plottooltext: "Revenue in $label : <b>$dataValue</b>",
        data: [
          {
            value: "36000"
          },
          {
            value: "22000"
          },
          {
            value: "24000"
          },
          {
            value: "42000"
          },
          {
            value: "35000"
          },
          {
            value: "21000"
          },
          {
            value: "26000"
          },
          {
            value: "28000"
          },
          {
            value: "47000"
          },
          {
            value: "38000"
          },
          {
            value: "29000"
          },
          {
            value: "23000"
          },
          {
            value: "24000"
          },
          {
            value: "42000"
          },
          {
            value: "35000"
          },
          {
            value: "21000"
          },
          {
            value: "26000"
          },
          {
            value: "28000"
          },
          {
            value: "47000"
          },
          {
            value: "38000"
          },
          {
            value: "29000"
          },
          {
            value: "23000"
          }
        ]
      },
      {
        seriesname: "Profit",
        plottooltext: "Profit in $label : <b>$dataValue</b>",
        renderas: "area",
        showvalues: "0",
        data: [
          {
            value: "4000"
          },
          {
            value: "5000"
          },
          {
            value: "3000"
          },
          {
            value: "4000"
          },
          {
            value: "1000"
          },
          {
            value: "7000"
          },
          {
            value: "1000"
          },
          {
            value: "4000"
          },
          {
            value: "1000"
          },
          {
            value: "6000"
          },
          {
            value: "2000"
          },
          {
            value: "7000"
          },
          {
            value: "6000"
          },
          {
            value: "8000"
          },
          {
            value: "10000"
          },
          {
            value: "7000"
          },
          {
            value: "8000"
          },
          {
            value: "4000"
          },
          {
            value: "9000"
          },
          {
            value: "6000"
          },
          {
            value: "6000"
          },
          {
            value: "7000"
          }
        ]
      },
      {
        seriesname: "Number of Employees",
        parentyaxis: "S",
        renderas: "line",
        showvalues: "0",
        plottooltext: "$value employees",
        data: [
          {
            value: "31"
          },
          {
            value: "25"
          },
          {
            value: "35"
          },
          {
            value: "29"
          },
          {
            value: "25"
          },
          {
            value: "23"
          },
          {
            value: "26"
          },
          {
            value: "25"
          },
          {
            value: "25"
          },
          {
            value: "35"
          },
          {
            value: "20"
          },
          {
            value: "30"
          },
          {
            value: "46"
          },
          {
            value: "34"
          },
          {
            value: "26"
          },
          {
            value: "33"
          },
          {
            value: "46"
          },
          {
            value: "25"
          },
          {
            value: "35"
          },
          {
            value: "28"
          },
          {
            value: "20"
          },
          {
            value: "43"
          }
        ]
      }
    ]
  },
  chord: {
    chart: {
      caption: "Different countries Gross Export",
      subcaption: "in 2017",
      nodelabelposition: "outside",
      showlegend: 0,
      theme: "froala",
      mode: "post",
      linkcolorbydominance: "1"
    },
    nodes: [
      {
        label: "India"
      },
      {
        label: "Canada"
      },
      {
        label: "USA"
      },
      {
        label: "China"
      },
      {
        label: "UK"
      },
      {
        label: "UAE"
      }
    ],
    links: [
      {
        from: "India",
        to: "Canada",
        value: 3040000000
      },
      {
        from: "India",
        to: "USA",
        value: 46500000000
      },
      {
        from: "India",
        to: "China",
        value: 12700000000
      },
      {
        from: "India",
        to: "UK",
        value: 8860000000
      },
      {
        from: "India",
        to: "UAE",
        value: 27500000000
      },
      {
        from: "Canada",
        to: "India",
        value: 24490000000
      },
      {
        from: "Canada",
        to: "USA",
        value: 310000000000
      },
      {
        from: "Canada",
        to: "China",
        value: 18300000000
      },
      {
        from: "Canada",
        to: "UK",
        value: 9320000000
      },
      {
        from: "Canada",
        to: "UAE",
        value: 1830000000
      },
      {
        from: "USA",
        to: "India",
        value: 24100000000
      },
      {
        from: "USA",
        to: "Canada",
        value: 277000000000
      },
      {
        from: "USA",
        to: "China",
        value: 132000000000
      },
      {
        from: "USA",
        to: "UK",
        value: 53600000000
      },
      {
        from: "USA",
        to: "UAE",
        value: 19900000000
      },
      {
        from: "China",
        to: "India",
        value: 68100000000
      },
      {
        from: "China",
        to: "Canada",
        value: 51900000000
      },
      {
        from: "China",
        to: "USA",
        value: 480000000000
      },
      {
        from: "China",
        to: "UK",
        value: 56800000000
      },
      {
        from: "China",
        to: "UAE",
        value: 45800000000
      },
      {
        from: "UK",
        to: "Canada",
        value: 62400000000
      },
      {
        from: "UK",
        to: "USA",
        value: 5780000000
      },
      {
        from: "UK",
        to: "India",
        value: 518000000
      },
      {
        from: "UK",
        to: "China",
        value: 21200000000
      },
      {
        from: "UK",
        to: "UAE",
        value: 9270000000
      },
      {
        from: "UAE",
        to: "India",
        value: 20500000000
      },
      {
        from: "UAE",
        to: "Canada",
        value: 299000000
      },
      {
        from: "UAE",
        to: "USA",
        value: 7470000000
      },
      {
        from: "UAE",
        to: "China",
        value: 1160000000
      },
      {
        from: "UAE",
        to: "UK",
        value: 3550000000
      }
    ]
  },
  timeseries: {
    data:
      "https://s3.eu-central-1.amazonaws.com/fusion.store/ft/data/column-line-combination-data.json",
    schema:
      "https://s3.eu-central-1.amazonaws.com/fusion.store/ft/schema/column-line-combination-schema.json",
    ds: {
      chart: {
        theme: "froala"
      },
      caption: {
        text: "Web visits & downloads"
      },
      subcaption: {
        text: "since 2015"
      },
      yaxis: [
        {
          plot: [
            {
              value: "Downloads",
              type: "column"
            },
            {
              value: "Web Visits",
              type: "line"
            }
          ]
        }
      ]
    }
  }
};

function fetchCheckStatus(response) {
  if (response.status >= 200 && response.status < 300) {
    return response;
  }
  const error = new Error(response.statusText);
  error.response = response;
  throw error;
}

function loadData(url) {
  const option = {
    method: "GET",
    headers: new Headers(),
    mode: "cors",
    cache: "default"
  };

  return fetch(url, option)
    .then(fetchCheckStatus)
    .then(function (resp) {
      const contentType = resp.headers.get("Content-Type");
      if (contentType && contentType.indexOf("application/json") !== -1) {
        return resp.json();
      }
      return resp.text();
    })
    .then(function (data) {
      return data;
    })
    .catch(function () {
      console.log("Something went wrong! Please check data/schema files");
    });
}

FroalaCharts.ready(function () {
  var myChart = new FroalaCharts({
    type: "column",
    id: "demo-chart",
    renderAt: "chart-container",
    width: "100%",
    height: "100%",
    dataFormat: "json",
    dataSource: chartData.column
  }).render();
});

function updateChart(ev) {
  let btns = document.getElementsByTagName("button");
  for (i = 0; i < btns.length; i++) {
    btns[i].classList.remove("active");
  }

  if (ev.name === "timeseries") {
    Promise.all([
      loadData(chartData.timeseries.data),
      loadData(chartData.timeseries.schema)
    ]).then(function (res) {
      const data = res[0];
      const schema = res[1];
      FroalaCharts.items["demo-chart"].chartType("timeseries");
      let dataStore = new FroalaCharts.DataStore();
      let dataSource = chartData.timeseries.ds;
      dataSource.data = dataStore.createDataTable(data, schema);
      FroalaCharts.items["demo-chart"].setJSONData(dataSource);
    });
  } else {
    FroalaCharts.items["demo-chart"].chartType(ev.name);
    FroalaCharts.items["demo-chart"].setJSONData(chartData[ev.name]);
  }
  ev.classList.add("active");
}

              
            
!
999px

Console