Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel is required to process package imports. If you need a different preprocessor remove all packages first.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/88/three.min.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
    void main() {
        gl_Position = vec4( position, 1.0 );
    }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
  uniform vec2 u_resolution;
  uniform vec2 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;

  vec2 hash2(vec2 p)
  {
    vec2 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xy;
    return o;
  }
  
  void grid(vec2 uv, inout vec3 colour, vec3 gridcolour, vec2 size, float linewidth) {
    vec2 grid = (fract(uv/size+.5)-.5)*size;
    grid = abs(grid);
    float gridlines = smoothstep(linewidth, linewidth + 0.005, min(grid.x, grid.y));
    colour = mix(gridcolour, colour, gridlines);
  }
  
  float voronoi(vec2 uv) {
    float dist = 4.;
    
    float   res = 0.;
    
    vec2 grid_id = floor(uv);
    vec2 grid_uv = fract(uv);
    
    for(float j = -1.; j < 2.; j++) {
      for(float i = -1.; i < 2.; i++) {
        vec2 offset = vec2(i, j);
        vec2 grid_test_id = grid_id + offset;
        vec2 rand = hash2(grid_test_id);
        vec2 point_pos = offset + rand - grid_uv;

        // The following adds some random animation to the particles
        rand = hash2(grid_test_id + 1000.);
        rand = 0.5 + 0.4*sin((u_time) + 6.2831*rand);
        point_pos = offset + rand - grid_uv;
        
        // float len = length(point_pos); // the length gives us a more linear (conic) length
        float len = dot(point_pos, point_pos); // The float gives us a more rounded distance
        // res += exp( -10.0*len );
        
        if(len < dist) {
          dist = len;
        }
      }
    }
    // return -(1.0/10.0)*log( res );
    
    return dist;
  }
  
  float pattern(vec2 uv, float time, inout vec2 q, inout vec2 r) {

    q = vec2( voronoi( uv + vec2(0.0,0.0) ),
              voronoi( uv + vec2(5.2,1.3) ) );

    r = vec2( voronoi( uv + 2.0*q + vec2(1.7 - time / 2.,9.2) ),
              voronoi( uv + 2.0*q + vec2(8.3 - time / 2.,2.8) ) );

    return voronoi( uv + 1.5*r );
  }
  
  vec4 colour(float pattern, vec2 distortion1, vec2 distortion2) {
    
    // All I'm doing here is mixing up the colours using the distortion vectors and the derrived pattern
    vec3 col = vec3(pattern + distortion1.x, pattern + distortion2.y / 2. + distortion1.x, pattern + distortion1.x * 2.);
    
    // Try muxing the colours here. Uncomment the following lines, 1-by-1 for some examples
    // col = vec3(col.b, col.r, col.g);
    // col = vec3(col.b * col.r) / col;
    // col *= vec3(dot(distortion1, distortion1) * .5);
    // col = col * (1.5 + sin(gl_FragCoord.x / u_resolution.x * 10.) * .5 + cos(gl_FragCoord.y / u_resolution.y * 10.) * .5);
    // col = 1. - col;
    // col *= sin(col * 2.);
    
    // Ramping up the contrast a bit
    col = col;
    
    return vec4(col, 1.);
  }

  void main() {
    vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
    
    uv *= 5.;
    
    vec2 q = vec2(0.);
    vec2 r = vec2(0.);
    float pattern = pattern(uv, u_time, q, r);
    
    vec4 col = colour(pattern, q, r);

    gl_FragColor = col;
  }
</script>


<div id="container" touch-action="none"></div>
              
            
!

CSS

              
                body {
  margin: 0;
  padding: 0;
}

#container {
  position: fixed;
  touch-action: none;
}
              
            
!

JS

              
                /*
Most of the stuff in here is just bootstrapping. Essentially it's just
setting ThreeJS up so that it renders a flat surface upon which to draw 
the shader. The only thing to see here really is the uniforms sent to 
the shader. Apart from that all of the magic happens in the HTML view
under the fragment shader.
*/

let container;
let camera, scene, renderer;
let uniforms;

let loader=new THREE.TextureLoader();
let texture;
loader.setCrossOrigin("anonymous");
loader.load(
  'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/noise.png',
  function do_something_with_texture(tex) {
    texture = tex;
    texture.wrapS = THREE.RepeatWrapping;
    texture.wrapT = THREE.RepeatWrapping;
    texture.minFilter = THREE.LinearFilter;
    init();
    animate();
  }
);

function init() {
  container = document.getElementById( 'container' );

  camera = new THREE.Camera();
  camera.position.z = 1;

  scene = new THREE.Scene();

  var geometry = new THREE.PlaneBufferGeometry( 2, 2 );

  uniforms = {
    u_time: { type: "f", value: 1.0 },
    u_resolution: { type: "v2", value: new THREE.Vector2() },
    u_noise: { type: "t", value: texture },
    u_mouse: { type: "v2", value: new THREE.Vector2() }
  };

  var material = new THREE.ShaderMaterial( {
    uniforms: uniforms,
    vertexShader: document.getElementById( 'vertexShader' ).textContent,
    fragmentShader: document.getElementById( 'fragmentShader' ).textContent
  } );
  material.extensions.derivatives = true;

  var mesh = new THREE.Mesh( geometry, material );
  scene.add( mesh );

  renderer = new THREE.WebGLRenderer();
  renderer.setPixelRatio( 1 );

  container.appendChild( renderer.domElement );

  onWindowResize();
  window.addEventListener( 'resize', onWindowResize, false );

  document.addEventListener('pointermove', (e)=> {
    let ratio = window.innerHeight / window.innerWidth;
    uniforms.u_mouse.value.x = (e.pageX - window.innerWidth / 2) / window.innerWidth / ratio;
    uniforms.u_mouse.value.y = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1;
    
    e.preventDefault();
  });
}

function onWindowResize( event ) {
  renderer.setSize( window.innerWidth, window.innerHeight );
  uniforms.u_resolution.value.x = renderer.domElement.width;
  uniforms.u_resolution.value.y = renderer.domElement.height;
}

function animate() {
  requestAnimationFrame( animate );
  render();
}

function render() {
  uniforms.u_time.value += 0.01;
  renderer.render( scene, camera );
}
              
            
!
999px

Console