Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/88/three.min.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
    void main() {
        gl_Position = vec4( position, 1.0 );
    }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
  uniform vec2 u_resolution;
  uniform vec2 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;
  
  #define PI 3.141592653589793
  #define TAU 6.
  
  const float multiplier = 15.5;

  const float zoomSpeed = 10.;
  const int layers = 10;

  const int octaves = 5;

  vec2 hash2(vec2 p)
  {
    vec2 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xy;
    return o;
  }
  
  mat2 rotate2d(float _angle){
      return mat2(cos(_angle),sin(_angle),
                  -sin(_angle),cos(_angle));
  }
  
  vec3 hsb2rgb( in vec3 c ){
    vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
                             6.0)-3.0)-1.0,
                     0.0,
                     1.0 );
    rgb = rgb*rgb*(3.0-2.0*rgb);
    return c.z * mix( vec3(1.0), rgb, c.y);
  }
  
  float hash(vec2 p)
  {
    float o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).x;
    return o;
  }
  float noise(vec2 uv) {
    vec2 id = floor(uv);
    vec2 subuv = fract(uv);
    vec2 u = subuv * subuv * (3. - 2. * subuv);
    float a = hash(id);
    float b = hash(id + vec2(1., 0.));
    float c = hash(id + vec2(0., 1.));
    float d = hash(id + vec2(1., 1.));
    return mix(mix(a, b, u.x), mix(c, d, u.x), u.y);
  }
  float fbm(in vec2 uv) {
    float s = .0;
    float m = .0;
    float a = .5;
    for(int i = 0; i < octaves; i++) {
      s += a * noise(uv);
      m += a;
      a *= .5;
      uv *= 2.;
    }
    return s / m;
  }
  
  vec3 domain(vec2 z){
    return vec3(hsb2rgb(vec3(atan(z.y,z.x)/TAU,1.,1.)));
  }
  vec3 colour(vec2 z) {
      return domain(z);
  }
  
  // The render function is where we render the pattern to be added to the layer
  vec3 render(vec2 uv, float scale, vec3 colour) {
    vec2 id = floor(uv);
    vec2 subuv = fract(uv);
    vec2 rand = hash2(id);
    float bokeh = abs(scale) * 1.;
    
    float particle = 0.;
    
    if(length(rand) > 1.3) {
      vec2 pos = subuv-.5;
      float field = length(pos);
      particle = smoothstep(.3, 0., field);
      particle += smoothstep(.4 * bokeh, 0.34 * bokeh, field);
    }
    return vec3(particle*2.);
  }
  
  vec3 renderLayer(int layer, int layers, vec2 uv, inout float opacity, vec3 colour, float n) {
    vec2 _uv = uv;
    // Scale
    // Generating a scale value between zero and 1 based on a mod of u_time
    // A frequency of 10 dixided by the layer index (10 / layers * layer)
    float scale = mod((u_time + zoomSpeed / float(layers) * float(layer)) / zoomSpeed, -1.);
    uv *= 20.; // The initial scale. Increasing this makes the cells smaller and the "speed" apepar faster
    uv *= scale*scale; // then modifying the overall scale by the generated amount
    // uv *= 1. + ( ( n*.5 ) * ( length(_uv) ) );
    // uv += .5*float(layer);
    uv = rotate2d(u_time / 10.) * uv; // rotarting
    uv += vec2(25. + sin(u_time*.1)) * float(layer); // ofsetting the UV by an arbitrary amount to make the layer appear different

    // render
    vec3 pass = render(uv * multiplier, scale, colour) * .2; // render the pass

     // this is the opacity of the layer fading in from the "bottom"
    opacity = 1. + scale;
    float _opacity = opacity;
    
    // pass += n * .5 * mix(vec3(0., .5, 1.5), vec3(1., .5, 0.), opacity);
    
    // This is the opacity of the layer fading out at the top (we want this minimal, hence the smoothstep)
    float endOpacity = smoothstep(0., 0.4, scale * -1.);
    opacity += endOpacity;

    return pass * _opacity * endOpacity;
  }

  void main() {
      vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy);

      if(u_resolution.y < u_resolution.x) {
        uv /= u_resolution.y;
      } else {
        uv /= u_resolution.x;
      }

      // uv.y += cos(u_time * .1) * .5;
      // uv.x += sin(u_time * .1) * .5;
    
      // float n = fbm(uv * 3. - 2.);
      float n = fbm((uv + vec2(sin(u_time*.1), u_time*.1)) * 2. - 2.);

      vec3 colour = vec3(0.);
      // colour = n * mix(vec3(0., .5, 1.5), vec3(1., .5, -.1), n);
      colour = n * mix(vec3(0., .5, 1.5)*-1.5, clamp(vec3(1., .5, .25)*2., 0., 1.), n);
      // colour -= n*n*n*n*.4;
      // colour += smoothstep(.8, 2.5, sin(n*n*n*8.))*.4;

      float opacity = 1.;
      float opacity_sum = 1.;

      for(int i = 1; i <= layers; i++) {
        colour -= renderLayer(i, layers, uv, opacity, colour, n);
        opacity_sum += opacity;
      }

      colour /= opacity_sum;

      gl_FragColor = vec4(clamp(colour * 20., 0., 1.),1.0);
  }
</script>


<div id="container" touch-action="none"></div>
              
            
!

CSS

              
                body {
  margin: 0;
  padding: 0;
}

#container {
  position: fixed;
  touch-action: none;
}
              
            
!

JS

              
                /*
Most of the stuff in here is just bootstrapping. Essentially it's just
setting ThreeJS up so that it renders a flat surface upon which to draw 
the shader. The only thing to see here really is the uniforms sent to 
the shader. Apart from that all of the magic happens in the HTML view
under the fragment shader.
*/

let container;
let camera, scene, renderer;
let uniforms;

let loader=new THREE.TextureLoader();
let texture;
loader.setCrossOrigin("anonymous");
loader.load(
  'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/noise.png',
  function do_something_with_texture(tex) {
    texture = tex;
    texture.wrapS = THREE.RepeatWrapping;
    texture.wrapT = THREE.RepeatWrapping;
    texture.minFilter = THREE.LinearFilter;
    init();
    animate();
  }
);

function init() {
  container = document.getElementById( 'container' );

  camera = new THREE.Camera();
  camera.position.z = 1;

  scene = new THREE.Scene();

  var geometry = new THREE.PlaneBufferGeometry( 2, 2 );

  uniforms = {
    u_time: { type: "f", value: 1.0 },
    u_resolution: { type: "v2", value: new THREE.Vector2() },
    u_noise: { type: "t", value: texture },
    u_mouse: { type: "v2", value: new THREE.Vector2() }
  };

  var material = new THREE.ShaderMaterial( {
    uniforms: uniforms,
    vertexShader: document.getElementById( 'vertexShader' ).textContent,
    fragmentShader: document.getElementById( 'fragmentShader' ).textContent
  } );
  material.extensions.derivatives = true;

  var mesh = new THREE.Mesh( geometry, material );
  scene.add( mesh );

  renderer = new THREE.WebGLRenderer();
  renderer.setPixelRatio( window.devicePixelRatio );

  container.appendChild( renderer.domElement );

  onWindowResize();
  window.addEventListener( 'resize', onWindowResize, false );

  document.addEventListener('pointermove', (e)=> {
    let ratio = window.innerHeight / window.innerWidth;
    uniforms.u_mouse.value.x = (e.pageX - window.innerWidth / 2) / window.innerWidth / ratio;
    uniforms.u_mouse.value.y = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1;
    
    e.preventDefault();
  });
}

function onWindowResize( event ) {
  renderer.setSize( window.innerWidth, window.innerHeight );
  uniforms.u_resolution.value.x = renderer.domElement.width;
  uniforms.u_resolution.value.y = renderer.domElement.height;
}

function animate(delta) {
  requestAnimationFrame( animate );
  render(delta);
}






let capturer = new CCapture( { 
  verbose: true, 
  framerate: 60,
  // motionBlurFrames: 4,
  quality: 90,
  format: 'webm',
  workersPath: 'js/'
 } );
let capturing = false;

isCapturing = function(val) {
  if(val === false && window.capturing === true) {
    capturer.stop();
    capturer.save();
  } else if(val === true && window.capturing === false) {
    capturer.start();
  }
  capturing = val;
}
toggleCapture = function() {
  isCapturing(!capturing);
}

window.addEventListener('keyup', function(e) { if(e.keyCode == 68) toggleCapture(); });

let then = 0;
function render(delta) {
  
  uniforms.u_time.value = -10000 + delta * 0.0005;
  renderer.render( scene, camera );
  
  if(capturing) {
    capturer.capture( renderer.domElement );
  }
}
              
            
!
999px

Console