Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script type="text/fragment" id="fragShader">
  precision highp float;

uniform vec2 u_resolution;
uniform float u_time;
uniform vec2 u_mouse;
uniform sampler2D s_noise;
uniform vec3 u_cp;

uniform sampler2D b_noise;

varying vec2 v_uv;
  
  // Uncomment to get screenspace antialiasing - nice, but slow
  // #define SSAA
  
  /* Raymarching constants */
  /* --------------------- */
  const float MAX_TRACE_DISTANCE = 10.;             // max trace distance
  const float INTERSECTION_PRECISION = 0.001;       // precision of the intersection
  const int NUM_OF_TRACE_STEPS = 256;               // max number of trace steps
  const float STEP_MULTIPLIER = .4;                 // the step mutliplier - ie, how much further to progress on each step
  
  /* Structures */
  /* ---------- */
  struct Camera {
    vec3 ro;
    vec3 rd;
    vec3 forward;
    vec3 right;
    vec3 up;
    float FOV;
  };
  struct Surface {
    float len;
    vec3 position;
    vec3 colour;
    float id;
    float steps;
    float AO;
  };
  struct Model {
    float dist;
    vec3 colour;
    float id;
  };
  
  vec2 toScreenspace(in vec2 p) {
    vec2 uv = (p - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
    return uv;
  }
  
  mat2 R(float a) {
    float c = cos(a);
    float s = sin(a);
    return mat2(c, -s, s, c);
  }
  float hash13(vec3 p3)
{
	p3  = fract(p3 * .1031);
    p3 += dot(p3, p3.zyx + 31.32);
    return fract((p3.x + p3.y) * p3.z);
}
  vec3 hash33(vec3 p3)
{
	p3 = fract(p3 * vec3(.1031, .1030, .0973));
    p3 += dot(p3, p3.yxz+33.33);
    return fract((p3.xxy + p3.yxx)*p3.zyx);

}
  //	Simplex 3D Noise 
//	by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}

float snoise(vec3 v){ 
  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
  vec3 i  = floor(v + dot(v, C.yyy) );
  vec3 x0 =   v - i + dot(i, C.xxx) ;

// Other corners
  vec3 g = step(x0.yzx, x0.xyz);
  vec3 l = 1.0 - g;
  vec3 i1 = min( g.xyz, l.zxy );
  vec3 i2 = max( g.xyz, l.zxy );

  //  x0 = x0 - 0. + 0.0 * C 
  vec3 x1 = x0 - i1 + 1.0 * C.xxx;
  vec3 x2 = x0 - i2 + 2.0 * C.xxx;
  vec3 x3 = x0 - 1. + 3.0 * C.xxx;

// Permutations
  i = mod(i, 289.0 ); 
  vec4 p = permute( permute( permute( 
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) 
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients
// ( N*N points uniformly over a square, mapped onto an octahedron.)
  float n_ = 1.0/7.0; // N=7
  vec3  ns = n_ * D.wyz - D.xzx;

  vec4 j = p - 49.0 * floor(p * ns.z *ns.z);  //  mod(p,N*N)

  vec4 x_ = floor(j * ns.z);
  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  vec4 x = x_ *ns.x + ns.yyyy;
  vec4 y = y_ *ns.x + ns.yyyy;
  vec4 h = 1.0 - abs(x) - abs(y);

  vec4 b0 = vec4( x.xy, y.xy );
  vec4 b1 = vec4( x.zw, y.zw );

  vec4 s0 = floor(b0)*2.0 + 1.0;
  vec4 s1 = floor(b1)*2.0 + 1.0;
  vec4 sh = -step(h, vec4(0.0));

  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  vec3 p0 = vec3(a0.xy,h.x);
  vec3 p1 = vec3(a0.zw,h.y);
  vec3 p2 = vec3(a1.xy,h.z);
  vec3 p3 = vec3(a1.zw,h.w);

//Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

// Mix final noise value
  vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
  m = m * m;
  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), 
                                dot(p2,x2), dot(p3,x3) ) );
}
  
  // Triplanar blending factor - controls the sharpness of the blending
const float blendSharpness = 2.0;

vec2 triplanarUV(vec3 worldPos, vec3 axis) {
    return (worldPos - dot(worldPos, axis) * axis).xy;
}

vec4 triplanarTexture(sampler2D texture, vec3 worldPos, vec3 normal) {
    // Compute weights for each axis based on the normal
    vec3 weights = pow(abs(normal), vec3(blendSharpness));
    weights /= dot(weights, vec3(1.0));

    // Sample the texture for each axis
    vec4 xTex = texture2D(texture, triplanarUV(worldPos, vec3(1, 0, 0)));
    vec4 yTex = texture2D(texture, triplanarUV(worldPos, vec3(0, 1, 0)));
    vec4 zTex = texture2D(texture, triplanarUV(worldPos, vec3(0, 0, 1)));

    // Blend the textures based on the weights
    return xTex * weights.x + yTex * weights.y + zTex * weights.z;
}
  vec4 boxmap( in sampler2D s, in vec3 p, in vec3 n, in float k )
{
    // project+fetch
	vec4 x = texture2D( s, p.yz );
	vec4 y = texture2D( s, p.zx );
	vec4 z = texture2D( s, p.xy );
    
    // and blend
    vec3 m = pow( abs(n), vec3(k) );
	return (x*m.x + y*m.y + z*m.z) / (m.x + m.y + m.z);
}
  
  //--------------------------------
  // Modelling
  //--------------------------------
  Model model(vec3 p) {
    vec2 n = vec2(length(p.xz) - .35 - (cos(u_time*5.)*.05+.05), p.y);
    float a = atan(p.x, p.z), ca=cos(a*3.+u_time*10.);
    n *= R(a*1.5+u_time*8.);
    n.y = abs(n.y)-.15 ;
    float d = length(n)-.08+ca*.03;
    vec3 pm = p * mix(1., .8+cos(u_time*3.+a*2.)*.5, sin(u_time*2.)*.5+.5);
    vec3 m = mod(pm, .1)-.05;
    vec3 id = floor((pm)/.1);
    vec3 gid = floor((pm)/.3);
    // d = length(vec2(max(0., d-.02), max(0., length(m)-.4)))-.01;
    // d = max(d, length(m)-.3)-.1;
    d = length(vec2(max(0., d), max(0., length(m)-.035-ca*.01)))-.02+ca*.01;
    vec3 colour = vec3(hash33(id).rrb * vec3(1,.5,.1) + vec3(0,.5,.7));
    colour *= hash13(gid)+.3;
    return Model(d, colour, 1.);
  }
  Model map( vec3 p ){
    return model(p);
  }
  
  Surface calcIntersection( in Camera cam ){
    float h =  INTERSECTION_PRECISION;
    float rayDepth = 0.0;
    float hitDepth = -1.0;
    float id = -1.;
    float steps = 0.;
    float ao = 0.;
    vec3 position;
    vec3 colour;

    for( int i=0; i< NUM_OF_TRACE_STEPS ; i++ ) {
      if( abs(h) < INTERSECTION_PRECISION || rayDepth > MAX_TRACE_DISTANCE ) break;
      position = cam.ro+cam.rd*rayDepth;
      Model m = map( position );
      h = m.dist;
      rayDepth += h * STEP_MULTIPLIER;
      id = m.id;
      steps += 1.;
      ao += max(h, 0.);
      colour = m.colour;
    }

    if( rayDepth < MAX_TRACE_DISTANCE ) hitDepth = rayDepth;
    if( rayDepth >= MAX_TRACE_DISTANCE ) id = -1.0;

    return Surface( hitDepth, position, colour, id, steps, ao );
  }
  Camera getCamera(in vec2 uv, in vec3 pos, in vec3 target) {
    vec3 forward = normalize(target - pos);
    vec3 right = normalize(vec3(forward.z, 0., -forward.x));
    vec3 up = normalize(cross(forward, right));
    
    float FOV = .6;
    
    return Camera(
      pos,
      normalize(forward + FOV * uv.x * right + FOV * uv.y * up),
      forward,
      right,
      up,
      FOV
    );
  }
  
  
  float softshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax ) {
    float res = 1.0;
    float t = mint;
    for( int i=0; i<16; i++ ) {
      float h = map( ro + rd*t ).dist;
      res = min( res, 8.0*h/t );
      t += clamp( h, 0.02, 0.10 );
      if( h<0.001 || t>tmax ) break;
    }
    return clamp( res, 0.0, 1.0 );
  }
  float calcAO( in vec3 pos, in vec3 nor ) {
    float occ = 0.0;
    float sca = 1.0;
    for( int i=0; i<5; i++ )
    {
      float hr = 0.01 + 0.12*float(i)/4.0;
      vec3 aopos =  nor * hr + pos;
      float dd = map( aopos ).dist;
      occ += -(dd-hr)*sca;
      sca *= 0.95;
    }
    return clamp( 1.0 - 3.0*occ, 0.0, 1.0 );    
  }
  vec3 shade(vec3 col, vec3 pos, vec3 nor, vec3 ref, Camera cam) {
    // lighitng        
    float occ = calcAO( pos, nor );
    vec3  lig = normalize( vec3(-0.6, 0.7, -0.3) );
    float amb = clamp( 0.5+0.5*nor.y, 0.0, 1.0 );
    
    float dif = clamp( dot( nor, lig ), 0.0, 1.0 );
    float bac = clamp( dot( nor, normalize(vec3(-lig.x,0.0,-lig.z))), 0.0, 1.0 )*clamp( 1.0-pos.y,0.0,1.0);
    //float dom = smoothstep( -0.1, 0.1, ref.y );
    float fre = pow( clamp(1.0+dot(nor,cam.rd),0.0,1.0), 2.0 );
    // float spe = pow(clamp( dot( ref, lig ), 0.0, 1.0 ),16.0);

    vec3 lin = vec3(0.0);
    lin += 1.20*dif*vec3(.85,0.80,0.70);
    // lin += 1.20*spe*vec3(1.00,0.85,0.55)*dif;
    // lin += 0.80*amb*vec3(0.50,0.70,.80)*occ;
    
    
    float hem = dot(nor, vec3(.1,1,0)) *.5 + .5;
    // lin += mix(vec3(1,0,0), vec3(0,0,1), hem);
    lin += mix(vec3(.5, .4, .3), vec3(0.1,.1,.6)*.5, hem);
    
    //lin += 0.30*dom*vec3(0.50,0.70,1.00)*occ;
    lin += 0.30*bac*vec3(0.25,0.25,0.25)*occ;
    lin += 0.80*fre*vec3(1.30,1.20,1.00)*occ;
    col = col*lin;
    
    // col = vec3(fre);

    return col;
  }
  
  // Calculates the normal by taking a very small distance,
  // remapping the function, and getting normal for that
  vec3 calcNormal( in vec3 pos ){
    vec3 eps = vec3( 0.001, 0.0, 0.0 );
    vec3 nor = vec3(
      map(pos+eps.xyy).dist - map(pos-eps.xyy).dist,
      map(pos+eps.yxy).dist - map(pos-eps.yxy).dist,
      map(pos+eps.yyx).dist - map(pos-eps.yyx).dist );
    return normalize(nor);
  }
  
  vec3 render(Surface surface, Camera cam, vec2 uv) {
    vec3 colour = vec3(.04,.045,.05);
    colour = vec3(.35, .5, .75);
    vec3 colourB = vec3(.9, .85, .8);
    
    vec2 pp = uv;
    
    colour = mix(colourB, colour, pow(length(pp), 2.)/1.5);

    if (surface.id == 1.){
      vec3 surfaceNormal = calcNormal( surface.position );
      vec3 ref = reflect(cam.rd, surfaceNormal);
      colour = surfaceNormal;
      vec3 pos = surface.position;
      
      vec3 col;
      
      // float r = length(pos);
      // vec3 q = vec3(r, atan(pos.x, pos.y), acos(pos.z/r));
      // vec2 uv = vec2(q.y/6.28318530718, q.z/3.1415926);
      // vec3 col = vec3(uv, 1.);
      // col = texture2D(s_noise,uv*10.).rrr*.2+.4;
      // col += surface.colour*.5-.25;
      
      // col = triplanarTexture(s_noise, pos*10., surfaceNormal).rrr;
      float d = 10.+ smoothstep(2., .01, length(cam.ro - pos))*10.;
      col = boxmap(s_noise, pos*d, surfaceNormal, 6.).rrr;
      col += surface.colour*.5-.25;
      
      colour = shade(col, pos, surfaceNormal, ref, cam);
    }

    return colour;
  }
  
  void main() {
    
    #ifdef SSAA
      vec3 c = vec3(0);
      for(int x=0; x<2; x++) {
        for(int y=0; y<2; y++) {
          vec2 uv = toScreenspace(gl_FragCoord.xy+vec2(x,y)*.5);

          Camera cam = getCamera(uv, u_cp * .01, vec3(0));
          Surface surface = calcIntersection(cam);

          c += render(surface, cam, uv);
        }
      }

      gl_FragColor = vec4(c*.25,1);
    #else
      vec2 uv = toScreenspace(gl_FragCoord.xy);

      // Camera cam = getCamera(uv, vec3(-0.5,.5,-1)*1.7, vec3(0));
      Camera cam = getCamera(uv, u_cp * .01, vec3(0));

      Surface surface = calcIntersection(cam);

      gl_FragColor = vec4(render(surface, cam, uv), 1.);
    #endif
    
  }
</script>
              
            
!

CSS

              
                body {
  background: #333;
  color: #fff;
  font-family: sans-serif;
}
body,
html {
  margin: 0;
  overflow: hidden;
  padding: 0;
}
canvas { width:100%; height: 100%; }
              
            
!

JS

              
                console.clear();

import { FragmentShader, Texture, Uniform, DollyCamera } from 'https://cdn.skypack.dev/wtc-gl@1.0.0-beta.51';
import { Vec2, Vec3, Mat4 } from "https://cdn.skypack.dev/wtc-math@1.0.17";

const shaderF = document.querySelector('#fragShader').innerText;

const camera = new DollyCamera({},{far:1000});

const cp = new Uniform({
  name: "cp",
  value: [50,50,100],
  kind: "vec3"
})

// Create the fragment shader wrapper
const FSWrapper = new FragmentShader({
  fragment: shaderF,
  onBeforeRender: (t) => {
    camera.update();
    
    cp.value = camera.position.multiplyNew(new Vec3(-1,1,1)).array;
  }
});
FSWrapper.playing = false;

const { gl, uniforms } = FSWrapper;

camera.setPosition(100, 100, -200.);
uniforms.u_cp = cp;

// Create the texture
const texture = new Texture(gl, {
  wrapS: gl.REPEAT,
  wrapT: gl.REPEAT
});
// Load the image into the uniform
const img = new Image();
img.crossOrigin = "anonymous";
img.src = "https://assets.codepen.io/982762/noise.png";
img.onload = () => { FSWrapper.playing = true; (texture.image = img) };

uniforms.s_noise = new Uniform({
  name: "noise",
  value: texture,
  kind: "texture"
});

              
            
!
999px

Console