HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<canvas id="webgl" width="500" height="1758"></canvas>
<script id="vertexShader" type="x-shader/x-vertex">
attribute vec4 a_position;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
void main() {
gl_Position = a_position;
}
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
precision highp float;
precision highp int;
uniform vec2 u_resolution;
uniform vec2 u_mouse;
uniform float u_time;
uniform sampler2D u_noise;
// movement variables
vec3 movement = vec3(.0);
const int maxIterations = 256;
const float stopThreshold = 0.001;
const float stepScale = .8;
const float eps = 0.005;
const vec3 clipColour = vec3(0.);
const vec3 fogColour = vec3(0.);
const vec3 light1_position = vec3(0, 1., -1.);
const vec3 light1_colour = vec3(.5, .8, 1.85);
const int octaves = 3;
struct Surface {
int object_id;
float distance;
vec3 position;
vec3 colour;
float ambient;
float spec;
};
float bumps(in vec3 p, float phase, float size, vec3 frequency) {
return size * sin(p.x * frequency.x + phase) * cos(p.y * frequency.y + phase) * cos(p.z * frequency.z + phase);
}
float fractalBumps(in vec3 p, float phase, float size, vec3 frequency, float multiplier) {
// const float octaves = 2.;
float _bumps = bumps(p, phase, size, frequency);
for(int i = 1; i < octaves; i++) {
float f = float(i);
_bumps += bumps(p, phase + f * 10., size * multiplier * 1./f, frequency * f);
}
return _bumps;
}
// This function describes the world in distances from any given 3 dimensional point in space
float world(in vec3 position, inout int object_id) {
vec3 pos = floor(position * .5);
object_id = int(floor(pos.x + pos.y + pos.z));
// position = mod(position, 1.) - .5;
float gradient = max(0., (position.y + .3));
float bumps = fractalBumps(position, u_time * 2., .5 * gradient, vec3(10. + sin(u_time) * 5.), 2.8);
float world = length(position) - .4 + bumps * .15;
// world = max(world, -position.y);
return world;
}
float world(in vec3 position) {
int dummy = 0;
return world(position, dummy);
}
Surface getSurface(int object_id, float rayDepth, vec3 sp) {
return Surface(
object_id,
rayDepth,
sp,
vec3(1.),
.5,
200.);
}
// The raymarch loop
Surface rayMarch(vec3 ro, vec3 rd, float start, float end, inout vec3 col) {
float sceneDist = 1e4;
float rayDepth = start;
int object_id = 0;
// Light position
vec3 lp = ro + vec3(2, 2, -5.);
bool hit = false;
for(int i = 0; i < maxIterations; i++) {
vec3 r = ro + rd * rayDepth;
sceneDist = world(r, object_id);
vec3 normal = normalize(r);
vec3 ld = lp - r;
float len = length( ld );
ld = normalize(ld);
float diffuse = max(0., dot(normal, ld))+.2;
float weighting = length(r);
// col += clamp((1./abs(sceneDist))*diffuse*.02*light1_colour, 0.005, .05);
col += clamp((1./abs(sceneDist))*weighting*diffuse*.005*light1_colour, 0.0, 1.);
// col *= abs(sceneDist) * (1. / weighting)*diffuse*.02*light1_colour;
if(sceneDist < stopThreshold) {
rayDepth += .08;
} else {
rayDepth += sceneDist * stepScale;
}
if(rayDepth > end) {
break;
}
}
col = sqrt(col);
return getSurface(object_id, rayDepth, ro + rd * rayDepth);
}
void main() {
vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
// Camera and look-at
vec3 cam = vec3(cos(u_mouse.x * 5.)*3.,u_mouse.y * 3.,sin(u_mouse.x * 5.)*3.);
vec3 lookAt = vec3(0,0,0);
// Unit vectors
vec3 forward = normalize(lookAt - cam);
vec3 right = normalize(vec3(forward.z, 0., -forward.x));
vec3 up = normalize(cross(forward, right));
// FOV
float FOV = .4;
// Ray origin and ray direction
vec3 ro = cam;
vec3 rd = normalize(forward + FOV * uv.x * right + FOV * uv.y * up);
// Ray marching
const float clipNear = 0.;
const float clipFar = 32.;
vec3 col = vec3(0.);
Surface objectSurface = rayMarch(ro, rd, clipNear, clipFar, col);
gl_FragColor = vec4(col, 1.);
}
</script>
body {
margin:0;
}
canvas {
position: fixed;
}
console.clear();
const twodWebGL = new WTCGL(
document.querySelector('canvas#webgl'),
document.querySelector('script#vertexShader').textContent,
document.querySelector('script#fragmentShader').textContent,
window.innerWidth,
window.innerHeight,
window.devicePixelRatio
);
window.addEventListener('resize', () => {
twodWebGL.resize(window.innerWidth, window.innerHeight);
});
// track mouse move
let mousepos = [0,0];
const u_mousepos = twodWebGL.addUniform('mouse', WTCGL.TYPE_V2, mousepos);
window.addEventListener('pointermove', (e) => {
let ratio = window.innerHeight / window.innerWidth;
if(window.innerHeight > window.innerWidth) {
mousepos[0] = (e.pageX - window.innerWidth / 2) / window.innerWidth;
mousepos[1] = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1 * ratio;
} else {
mousepos[0] = (e.pageX - window.innerWidth / 2) / window.innerWidth / ratio;
mousepos[1] = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1;
}
twodWebGL.addUniform('mouse', WTCGL.TYPE_V2, mousepos);
});
// Load all our textures. We only initiate the instance once all images are loaded.
const textures = [
{
name: 'noise',
url: 'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/noise.png',
type: WTCGL.IMAGETYPE_TILE,
img: null
}
];
const loadImage = function (imageObject) {
let img = document.createElement('img');
img.crossOrigin="anonymous";
return new Promise((resolve, reject) => {
img.addEventListener('load', (e) => {
imageObject.img = img;
resolve(imageObject);
});
img.addEventListener('error', (e) => {
reject(e);
});
img.src = imageObject.url
});
}
const loadTextures = function(textures) {
return new Promise((resolve, reject) => {
const loadTexture = (pointer) => {
if(pointer >= textures.length || pointer > 10) {
resolve(textures);
return;
};
const imageObject = textures[pointer];
const p = loadImage(imageObject);
p.then(
(result) => {
twodWebGL.addTexture(result.name, result.type, result.img);
},
(error) => {
console.log('error', error)
}).finally((e) => {
loadTexture(pointer+1);
});
}
loadTexture(0);
});
}
loadTextures(textures).then(
(result) => {
twodWebGL.initTextures();
// twodWebGL.render();
twodWebGL.running = true;
},
(error) => {
console.log('error');
}
);
Also see: Tab Triggers