Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel is required to process package imports. If you need a different preprocessor remove all packages first.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML Settings

Here you can Sed posuere consectetur est at lobortis. Donec ullamcorper nulla non metus auctor fringilla. Maecenas sed diam eget risus varius blandit sit amet non magna. Donec id elit non mi porta gravida at eget metus. Praesent commodo cursus magna, vel scelerisque nisl consectetur et.

HTML

            
              <canvas id="webgl" width="500" height="1758"></canvas>

<script id="vertexShader" type="x-shader/x-vertex">
  attribute vec4 a_position;
  
  uniform mat4 u_modelViewMatrix;
  uniform mat4 u_projectionMatrix;
  
  void main() {
    gl_Position = a_position;
  }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
 precision highp float;
  precision highp int;
  
  uniform vec2 u_resolution;
  uniform vec2 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;
  
  // movement variables
  vec3 movement = vec3(.0);
  
  const int maxIterations = 128;
  const float stopThreshold = 0.001;
  const float stepScale = .2;
  const float eps = 0.005;
  const vec3 clipColour = vec3(0.);
  const vec3 fogColour = vec3(0.);
  
  const vec3 light1_position = vec3(0, 1., -1.);
  const vec3 light1_colour = vec3(.8, .8, .85);
  
  struct Surface {
    int object_id;
    float distance;
    vec3 position;
    vec3 colour;
    float ambient;
    float spec;
  };
  
  float sdBox( vec3 p, vec3 b ) {
    vec3 d = abs(p) - b;
    return length(max(d,0.0))
           + min(max(d.x,max(d.y,d.z)),0.0); // remove this line for an only partially signed sdf 
  }
  
  // This function describes the world in distances from any given 3 dimensional point in space
  float world(in vec3 position, inout int object_id) {
    vec3 pos = floor(position * .5);
    object_id = 1;
    
    float t = u_time * 3.;
    float s = sin(t);
    float c = cos(t);
    mat2 m = mat2(c, -s, s, c);
    position.xy *= m;
    position.xz *= m;
    
    const vec3 boxSize = vec3(.3, .3, 1.);
    const vec3 boxOffset = vec3(.3, .3, 0);
    float box1 = sdBox(position-boxOffset, boxSize);
    float box2 = sdBox(position+boxOffset, boxSize);
    float sphere = length(abs(position)) - .3;
    float sphere2 = length(abs(position)) - .299;
    sphere = max(-sphere2, sphere);
    sphere = max(-box1, sphere);
    sphere = max(-box2, sphere);
    
    
    position *= 1.2;
    position.xy *= m;
    
    box1 = sdBox(position-boxOffset, boxSize);
    box2 = sdBox(position+boxOffset, boxSize);
    float sphere_1 = length(abs(position)) - .3;
    sphere2 = length(abs(position)) - .299;
    sphere_1 = max(-sphere2, sphere_1);
    sphere_1 = max(-box1, sphere_1);
    sphere_1 = max(-box2, sphere_1);
    
    
    position *= 1.2;
    position.xy *= m;
    
    box1 = sdBox(position-boxOffset, boxSize);
    box2 = sdBox(position+boxOffset, boxSize);
    float sphere_2 = length(abs(position)) - .3;
    sphere2 = length(abs(position)) - .299;
    sphere_2 = max(-sphere2, sphere_2);
    sphere_2 = max(-box1, sphere_2);
    sphere_2 = max(-box2, sphere_2);
    
    
    position *= 1.3;
    position.xy *= m;
    
    box1 = sdBox(position-boxOffset, boxSize);
    box2 = sdBox(position+boxOffset, boxSize);
    float sphere_3 = length(abs(position)) - .3;
    sphere2 = length(abs(position)) - .299;
    sphere_3 = max(-sphere2, sphere_3);
    sphere_3 = max(-box1, sphere_3);
    sphere_3 = max(-box2, sphere_3);
    
    float minsphere = min(sphere, min(sphere_1, sphere_2));
    
    if(sphere_3 < minsphere) {
      minsphere = sphere_3;
      object_id = 2;
    }
    
    return minsphere;
  }
  float world(in vec3 position) {
    int dummy = 0;
    return world(position, dummy);
  }
  
  vec3 getObjectColour(int object_id) {
    float modid = mod(float(object_id), 5.);
    if(modid == 0.) {
      return vec3(.0, 0., 0.5);
    } else if(modid == 1.) {
      return vec3(.5, 0.5, 0.);
    } else if(modid == 2.) {
      return vec3(.5, 0.5, 0.5);
    } else if(modid == 3.) {
      return vec3(.0, 0.5, 0.5);
    } else if(modid == 4.) {
      return vec3(.0, 0.5, 0.);
    }
    return vec3(.5, 0., 0.);
  }
  
  Surface getSurface(int object_id, float rayDepth, vec3 sp) {
    return Surface(
      object_id, 
      rayDepth, 
      sp, 
      getObjectColour(object_id), 
      .5, 
      200.);
  }
  
  // The raymarch loop
  Surface rayMarch(vec3 ro, vec3 rd, float start, float end, inout float field) {
    float sceneDist = 1e4;
    float rayDepth = start;
    int object_id = 0;
    for(int i = 0; i < maxIterations; i++) {
      sceneDist = world(ro + rd * rayDepth, object_id);
      
      if(object_id == 2) {
        field -= 1. / sceneDist;
      } else {
        field += 5. / sceneDist*sceneDist;
      }
      
      
      if(sceneDist < stopThreshold || rayDepth > end) {
        break;
      }
      
      rayDepth += sceneDist * stepScale;
    }
    
    return getSurface(object_id, rayDepth, ro + rd * rayDepth);
  }
  
  vec3 path(float z) {
    return vec3(0,0,0.);
    return vec3(0,0,-100.+z);
  }

  void main() {
    vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
    
    // movement
    movement = path(u_time);
    
    // Camera and look-at
    vec3 cam = vec3(u_mouse.x+1.,u_mouse.y+1.,-2);
    vec3 lookAt = vec3(0,0,0);
    
    // add movement
    lookAt += movement;
    cam += movement;
    
    // Unit vectors
    vec3 forward = normalize(lookAt - cam);
    vec3 right = normalize(vec3(forward.z, 0., -forward.x));
    vec3 up = normalize(cross(forward, right));
    
    // FOV
    float FOV = .4;
    
    // Ray origin and ray direction
    vec3 ro = cam;
    vec3 rd = normalize(forward + FOV * uv.x * right + FOV * uv.y * up);
    
    // Ray marching
    const float clipNear = 0.;
    const float clipFar = 32.;
    float field = 0.;
    Surface objectSurface = rayMarch(ro, rd, clipNear, clipFar, field);
    // if(objectSurface.distance > clipFar) {
    //   gl_FragColor = vec4(clipColour, 1.);
    //   return;
    // }
    
    vec3 sceneColour = vec3(clamp(field*.0015, 0., 1.));
    // vec3 sceneColour = vec3(dist*.1);
    
    gl_FragColor = vec4(sceneColour*sceneColour, 1.);
  }
  
</script>
            
          
!

CSS

            
              body {
  margin:0;
}

canvas {
  position: fixed;
}
            
          
!

JS

            
              console.clear();

const twodWebGL = new WTCGL.default(
  document.querySelector('canvas#webgl'), 
  document.querySelector('script#vertexShader').textContent, 
  document.querySelector('script#fragmentShader').textContent
);
twodWebGL.startTime = -10000 + Math.random() * 5000;


// twodWebGL.addUniform('xscale', WTCGL.TYPE_FLOAT, 0.5);

window.addEventListener('resize', () => {
  twodWebGL.resize(window.innerWidth, window.innerHeight);
});
twodWebGL.resize(window.innerWidth, window.innerHeight);

// twodWebGL.pxratio = window.devicePixelRatio;






// track mouse move
let mousepos = [0,0];
const u_mousepos = twodWebGL.addUniform('mouse', WTCGL.TYPE_V2, mousepos);
window.addEventListener('pointermove', (e) => {
  let ratio = window.innerHeight / window.innerWidth;
  if(window.innerHeight > window.innerWidth) {
    mousepos[0] = (e.pageX - window.innerWidth / 2) / window.innerWidth;
    mousepos[1] = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1 * ratio;
  } else {
    mousepos[0] = (e.pageX - window.innerWidth / 2) / window.innerWidth / ratio;
    mousepos[1] = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1;
  }
  twodWebGL.addUniform('mouse', WTCGL.TYPE_V2, mousepos);
});









// Load all our textures. We only initiate the instance once all images are loaded.
const textures = [
  {
    name: 'noise',
    url: 'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/noise.png',
    type: WTCGL.IMAGETYPE_TILE,
    img: null
  }
];
const loadImage = function (imageObject) {
  let img = document.createElement('img');
  img.crossOrigin="anonymous";
  
  return new Promise((resolve, reject) => {
    img.addEventListener('load', (e) => {
      imageObject.img = img;
      resolve(imageObject);
    });
    img.addEventListener('error', (e) => {
      reject(e);
    });
    img.src = imageObject.url
  });
}
const loadTextures = function(textures) {
  return new Promise((resolve, reject) => {
    const loadTexture = (pointer) => {
      if(pointer >= textures.length || pointer > 10) {
        resolve(textures);
        return;
      };
      const imageObject = textures[pointer];

      const p = loadImage(imageObject);
      p.then(
        (result) => {
          twodWebGL.addTexture(result.name, result.type, result.img);
        },
        (error) => {
          console.log('error', error)
        }).finally((e) => {
          loadTexture(pointer+1);
      });
    }
    loadTexture(0);
  });
  
}

loadTextures(textures).then(
  (result) => {
    twodWebGL.initTextures();
    // twodWebGL.render();
    twodWebGL.running = true;
  },
  (error) => {
    console.log('error');
  }
);
            
          
!
999px

Console