Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/88/three.min.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
    uniform float u_time;
  
    const float spawnrate = .01;
    const float life = 200.;
    const float fadetime = 20.;
    const int octaves = 5;
    const float seed = 43758.5453123;
    const float seed2 = 73156.8473192;
  
    float random(float val) {
      return fract(sin(val) * seed);
    }
  
    vec2 random2(vec2 st, float seed){
        st = vec2( dot(st,vec2(127.1,311.7)),
                  dot(st,vec2(269.5,183.3)) );
        return -1.0 + 2.0*fract(sin(st)*seed);
    }
  
    float random2d(vec2 uv) {
      return fract(
                sin(
                  dot( uv.xy, vec2(12.9898, 78.233) )
                ) * seed);
    }
  
  varying float v_z;
  
  float easeLinear(float time, float begin, float change, float duration)
  {
    return change * time / duration + begin;
  }
  vec2 easeLinear(float time, vec2 begin, vec2 change, float duration)
  {
    return change * time / duration + begin;
  }
      
  void main() {
    vec4 pos = vec4(position,1.0);
    float id = position.z;
    bool emitter = mod(id, 2.) == 0.;
    float rand = random(id);
    float rand1 = random(id + 1.);
    float pointsize = 100. * rand * rand1;
    
    // float spawnrate = spawnrate + (sin(u_time / 10.) + 1.) * .01;
    float time = mod(u_time - id * spawnrate, life);
    float step = time / life;
    bool alive = time >= 0.;
    
    vec2 polar = vec2(0., 0.);
    
    if(alive) {
      if(emitter) {
        // pos.xy = vec2(10. * rand);
        vec2 outerPolar = vec2(30. + sin(u_time / 50.) * 10., 200.);
        polar = easeLinear(time, vec2(sin(u_time / 50.), 100. + sin(u_time / 10.) * 50.), outerPolar, life);
        // polar.x += sin(u_time / 10. * rand) + 1.;
        polar.y += (sin((u_time + 100.) / 10. * rand) + 1.) * (polar.x * 2. + 10.);

        if(time < fadetime) {
          pointsize = easeLinear(time, 0., pointsize, fadetime);
        } else if(time > life - fadetime) {
          pointsize = easeLinear(time - life + fadetime, pointsize, -pointsize, fadetime);
        }
        pointsize *= (sin((u_time + 100.) / 10. * rand1) + 1.);
        pointsize *= cos(polar.x * 1.5 + u_time * .1) * .5 + 1.;
        pos.z = 100.;
      } else {
        // pos.xy = vec2(10. * rand);
        vec2 outerPolar = vec2(30. + sin(u_time / 50.) * 10. + 3.14, 200.);
        polar = easeLinear(time, vec2(sin(u_time / 50.) + 3.14, 100. + cos(u_time / 10.) * 50.), outerPolar, life);
        // polar.x += sin(u_time / 10. * rand) + 1.;
        polar.y += (sin((u_time + 100.) / 10. * rand) + 1.) * (polar.x * 2. + 10.);

        if(time < fadetime) {
          pointsize = easeLinear(time, 0., pointsize, fadetime);
        } else if(time > life - fadetime) {
          pointsize = easeLinear(time - life + fadetime, pointsize, -pointsize, fadetime);
        }
        pointsize *= 1. - (sin((u_time + 100.) / 10. * rand1) + 1.);
        // pointsize *= cos(polar.x * 1.5 + u_time * .1) * .5 + 1.;
        pos.z = 90.;
      }
    }
    
    pos.x += cos(polar.x) * polar.y;
    pos.y += sin(polar.x) * polar.y;
    
    v_z = pos.z / 100. + polar.x / 100.;
    gl_PointSize = pointsize;

    gl_Position = projectionMatrix *
                  modelViewMatrix *
                  pos;
  }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
    uniform vec2 u_resolution;
    uniform float u_time;
    uniform sampler2D tSprite;
  
    varying float v_z;

    vec3 hsb2rgb( in vec3 c ){
      vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
                               6.0)-3.0)-1.0,
                       0.0,
                       1.0 );
      rgb = rgb*rgb*(3.0-2.0*rgb);
      return c.z * mix( vec3(1.0), rgb, c.y);
    }
  
    #define TAU 6.28318531
    float starSDF(vec2 st, int V, float s) {
      // st = st*4.-2.;
      float a = atan(st.y, st.x)/TAU;
      float seg = a * float(V);
      a = ((floor(seg) + 0.5)/float(V) + 
          mix(s,-s,step(.5,fract(seg)))) 
          * TAU;
      return abs(dot(vec2(cos(a),sin(a)),
                     st));
    }
  
    void main() {
      vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / u_resolution.y;
      
      float dist;
      
      vec2 pointUV = gl_PointCoord.xy - .5 * v_z / v_z;
      dist = 1. - length(pointUV) * 3.;
      
      vec2 polar = vec2(atan(uv.y, uv.x), length(uv.xy));
      int points = int(dist * 5.);
      
      // gl_FragColor = vec4(hsb2rgb(vec3(polar.y / 3., 1. - v_z * sin(polar.y * u_time / 100.), polar.y * v_z / 10.)), dist);
      gl_FragColor = vec4(
        mix(
          vec3(5.0, 0., 0.), 
          vec3(.8, 1.5, .5), 
          clamp(dist * v_z, 0., 1.)
        ) * 
        dist, 
        smoothstep(0.6, .61 + v_z / 1.5, dist)
      );
      // gl_FragColor *= v_z / 2.;
      // gl_FragColor = vec4(vec3(.8, .8, .5), smoothstep(0.8, .81, dist));
      // gl_FragColor = vec4(v_z / 2.);
      // gl_FragColor = vec4(vec3(dist), dist);
    }
</script>


<div id="container"></div>
              
            
!

CSS

              
                body {
  margin: 0;
  padding: 0;
}

#container {
  position: fixed;
}
              
            
!

JS

              
                /*
Most of the stuff in here is just bootstrapping. Essentially it's just
setting ThreeJS up so that it renders a flat surface upon which to draw 
the shader. The only thing to see here really is the uniforms sent to 
the shader. Apart from that all of the magic happens in the HTML view
under the fragment shader.
*/

let container;
let camera, scene, renderer;
let uniforms;

function init() {
  container = document.getElementById( 'container' );

  camera = new THREE.PerspectiveCamera( 75, window.innerWidth / window.innerHeight, 1, 3000 );
  camera.position.z = 600;
  // camera.position.x = -300;
  console.log(camera.lookAt(0,0,0));

  scene = new THREE.Scene();
  
  var geometry = new THREE.Geometry();

  var particleCount = 150000;
  // particleCount = 100;

  for (i = 0; i < particleCount; i++) {

      var vertex = new THREE.Vector3();
    
      vertex.x = 0;
      vertex.y = 0;
      vertex.z = i;

      geometry.vertices.push(vertex);
  }

  uniforms = {
    u_time: { type: "f", value: -10000.0 },
    u_resolution: { type: "v2", value: new THREE.Vector2() },
    u_mouse: { type: "v2", value: new THREE.Vector2() }
  };

  var material = new THREE.ShaderMaterial( {
    uniforms: uniforms,
    vertexShader: document.getElementById( 'vertexShader' ).textContent,
    fragmentShader: document.getElementById( 'fragmentShader' ).textContent
  } );
  material.transparent = true;
  material.blending = THREE.AdditiveBlending;
  material.depthTest = false;

  var mesh = new THREE.Points( geometry, material );
  // var mesh = new THREE.Mesh( geometry, starsMaterial );
  scene.add( mesh );

  renderer = new THREE.WebGLRenderer();
  // renderer.setPixelRatio( window.devicePixelRatio );
  renderer.setPixelRatio( 1 );

  container.appendChild( renderer.domElement );

  onWindowResize();
  window.addEventListener( 'resize', onWindowResize, false );

  document.onmousemove = function(e){
    
    // camera.position.x = -300 + e.pageX / window.innerWidth * 600;
    // camera.position.y = 300 + e.pageY / window.innerHeight * -600;
    // console.log(camera.lookAt(0,0,0));
    
    uniforms.u_mouse.value.x = e.pageX
    uniforms.u_mouse.value.y = e.pageY
  }
}

function onWindowResize( event ) {
  camera.aspect = window.innerWidth / window.innerHeight;
  camera.updateProjectionMatrix();
  renderer.setSize( window.innerWidth, window.innerHeight );
  uniforms.u_resolution.value.x = renderer.domElement.width;
  uniforms.u_resolution.value.y = renderer.domElement.height;
}

function animate() {
  requestAnimationFrame( animate );
  render();
}

function render() {
  uniforms.u_time.value += 0.02;
  renderer.render( scene, camera );
}



init();
animate();
              
            
!
999px

Console