Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/88/three.min.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
    void main() {
        gl_Position = vec4( position, 1.0 );
    }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
  uniform vec2 u_resolution;
  uniform vec3 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;
  uniform sampler2D u_buffer;
  uniform sampler2D u_environment;
  uniform sampler2D u_texture;
  uniform bool u_renderpass;
  uniform int u_frame;
  
  #define PI 3.141592653589793
  #define TAU 6.283185307179586
  #define rain 1
  #define depth 20.
  #define velPropagation 1.4
  #define pow2(x) (x * x)
  
  // Holy fuck balls, fresnel!
  const float bias = .2;
  const float scale = 10.;
  const float power = 10.1;
  
  // blur constants
  const float blurMultiplier = 0.95;
  const float blurStrength = 2.98;
  const int samples = 8;
  const float sigma = float(samples) * 0.25;
  

  vec2 hash2(vec2 p)
  {
    vec2 o = texture2D( u_noise, (p+0.5)/256.0, -100.0 ).xy;
    return o;
  }

  float gaussian(vec2 i) {
    return 1.0 / (2.0 * PI * pow2(sigma)) * exp(-((pow2(i.x) + pow2(i.y)) / (2.0 * pow2(sigma))));
  }

  vec3 hash33(vec3 p){ 

    float n = sin(dot(p, vec3(7, 157, 113)));    
    return fract(vec3(2097152, 262144, 32768)*n); 
  }

  vec3 blur(sampler2D sp, vec2 uv, vec2 scale) {
    vec3 col = vec3(0.0);
    float accum = 0.0;
    float weight;
    vec2 offset;

    for (int x = -samples / 2; x < samples / 2; ++x) {
        for (int y = -samples / 2; y < samples / 2; ++y) {
            offset = vec2(x, y);
            weight = gaussian(offset);
            col += texture2D(sp, uv + scale * offset).rgb * weight;
            accum += weight;
        }
    }

    return col / accum;
  }
  
  vec3 hsb2rgb( in vec3 c ){
    vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
                             6.0)-3.0)-1.0,
                     0.0,
                     1.0 );
    rgb = rgb*rgb*(3.0-2.0*rgb);
    return c.z * mix( vec3(1.0), rgb, c.y);
  }
  
  vec3 domain(vec2 z){
    return vec3(hsb2rgb(vec3(atan(z.y,z.x)/TAU,1.,1.)));
  }
  vec3 colour(vec2 z) {
      return domain(z);
  }
  
  const float delta = .005;
  
  
  vec4 renderRipples() {
    vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
    vec3 e = vec3(vec2(3.6)/u_resolution.xy,0.);
    vec2 sample = gl_FragCoord.xy / u_resolution.xy;
    float ratio = u_resolution.x / u_resolution.y;
    vec2 mouse = u_mouse.xy - uv;
    
    vec4 fragcolour = texture2D(u_buffer, sample);
    
    float shade = 0.;
    
    // float shade = 1. - smoothstep(.1, .15, length(mouse));
    if(u_mouse.z == 1.) {
      shade = smoothstep(.02 + abs(sin(u_time*10.) * .006), .0, length(mouse)); 
    }
    if(mod(u_time, .1) >= .095) {
      vec2 hash = hash2(vec2(u_time*2., sin(u_time*10.)))*3.-1.;
      shade += smoothstep(.012, .0, length(uv-hash+.5));
    }
    // shade -= (smoothstep(.185, .0, length(mouse))-shade)*2.;

    vec4 texcol = fragcolour;

    float d = shade * 2.;

    float t = texture2D(u_buffer, sample-e.zy, 1.).x;
    float r = texture2D(u_buffer, sample-e.xz, 1.).x;
    float b = texture2D(u_buffer, sample+e.xz, 1.).x;
    float l = texture2D(u_buffer, sample+e.zy, 1.).x;

    // float t = texture2D(u_buffer, sample + vec2(0., -delta*ratio)).x;
    // float r = texture2D(u_buffer, sample + vec2(delta, 0.)).x;
    // float b = texture2D(u_buffer, sample + vec2(0., delta*ratio)).x;
    // float l = texture2D(u_buffer, sample + vec2(-delta, 0.)).x;

    // fragcolour = (fragcolour + t + r + b + l) / 5.;
    d += -(texcol.y-.5)*2. + (t + r + b + l - 2.);
    d *= .99;
    d *= float(u_frame > 5);
    d = d*.5+.5;

    fragcolour = vec4(d, texcol.x, 0, 0);
    
    return fragcolour;
  }
  
  
  
  
  //   Naive environment mapping. Pass the reflected vector and pull back the texture position for that ray.
  vec3 envMap(vec3 rd, vec3 sn, float scale){

    // rd.xy -= u_time*.2; // This just sort of compensates for the camera movement
    // rd.xy -= movement;
    rd *= 1.; // scale the whole thing down a but from the scaled UVs

    vec3 col = texture2D(u_environment, rd.xy - .5).rgb*2.;
    col *= normalize(col);
    // col *= vec3(1., 1., 1.2);
    // col *= vec3(hash2(rd.xy).y * .5 + .5);

    return col;

  }
  
  float bumpMap(vec2 uv, float height, inout vec3 colourmap) {
    
    
    vec3 shade;
    
    vec2 sample = gl_FragCoord.xy / u_resolution.xy;
    sample += uv;
    vec2 ps = vec2(1.0) / u_resolution.xy;
    
    shade = vec3(blur(u_buffer, sample, ps*blurStrength));
    // shade = texture2D(u_buffer, sample).rgb;
    // shade = vec3(shade.y * shade.y);
    
    return 1. - shade.x * height;
  }
  float bumpMap(vec2 uv, float height) {
    vec3 colourmap;
    return bumpMap(uv, height, colourmap);
  }

  vec4 renderPass(vec2 uv, inout float distortion) {
    vec3 surfacePos = vec3(uv, 0.0);
    vec3 ray = normalize(vec3(uv, 1.));
    // vec3 lightPos = vec3(cos(u_time / 2.) * 2., sin(u_time / 2.) * 2., -3.);
    vec3 lightPos = vec3(cos(u_time * .5 + 2.) * 2., 1. + sin(u_time * .5 + 2.) * 2., -3.);
    vec3 normal = vec3(0., 0., -1);

    vec2 sampleDistance = vec2(.005, 0.);
    
    vec3 colourmap;
    
    float fx = bumpMap(sampleDistance.xy, .2);
    float fy = bumpMap(sampleDistance.yx, .2);
    float f = bumpMap(vec2(0.), .2, colourmap);
    
    distortion = f;
    
    fx = (fx-f)/sampleDistance.x;
    fy = (fy-f)/sampleDistance.x;
    normal = normalize( normal + vec3(fx, fy, 0) * 0.2 );
    
    // Holy fuck balls, fresnel!
    // specular = max(0.0, min(1.0, bias + scale * (1.0 + length(camPos-sp * surfNormal)) * power));
    float shade = bias + (scale * pow(1.0 + dot(normalize(surfacePos-vec3(uv, -3.0)), normal), power));

    vec3 lightV = lightPos - surfacePos;
    float lightDist = max(length(lightV), 0.001);
    lightV /= lightDist;

    vec3 lightColour = vec3(.8, .8, 1.);

    float shininess = .8;
    float brightness = 1.;

    float falloff = 0.1;
    float attenuation = 1./(1.0 + lightDist*lightDist*falloff);

    float diffuse = max(dot(normal, lightV), 0.);
    float specular = pow(max(dot( reflect(-lightV, normal), -ray), 0.), 52.) * shininess;
    
    // vec3 tex = texture2D(u_environment, (reflect(vec3(uv, -1.), normal)).xy ).rgb;
    vec3 reflect_ray = reflect(vec3(uv, 1.), normal * 1.);
    // The reflect ray is the ray wwe use to determine the reflection.
    // We use the UV less the movement (to account for "environment") to the surface normal
    vec3 tex = envMap(reflect_ray, normal, 1.5) * (shade + .5); // Fake environment mapping.

    vec3 texCol = (vec3(.4, .6, .9) + tex * brightness) * .5;
    
    float metalness = (1. - colourmap.x);
    metalness *= metalness;

    vec3 colour = (texCol * (diffuse*vec3(1, .97, .92)*2. + 0.5) + lightColour*specular * f * 2. * metalness)*attenuation*1.5;
    // colour *= 1.5;

    // return vec4(shade);
    return vec4(colour, 1.);
  }

  void main() {
    
    vec4 fragcolour = vec4(0);
    
    if(u_renderpass) {
      fragcolour = renderRipples();
    } else {
      
      
      vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
      vec2 sample = gl_FragCoord.xy / u_resolution.xy;
      // uv.x += sin(u_time*.5);
      // sample.x += sin(u_time*.05);
      
      float distortion;
      vec4 reflections = renderPass(uv, distortion);
      
      vec4 c = texture2D(u_texture, uv*1.5+distortion).rbra;
      fragcolour = c * c * c * .4;
      fragcolour *= fragcolour; 
      fragcolour += (texture2D(u_buffer, sample+.03).x)*.1 - .1;
      fragcolour += reflections*.7;
      // fragcolour = texture2D(u_buffer, sample + fragcolour.rg * .005);
      // // fragcolour = vec4(fragcolour.x * fragcolour.x);
    }

    gl_FragColor = fragcolour ;
  }
</script>


<div id="container" touch-action="none"></div>
              
            
!

CSS

              
                body {
  margin: 0;
  padding: 0;
}

#container {
  position: fixed;
  touch-action: none;
}
              
            
!

JS

              
                /*
Most of the stuff in here is just bootstrapping. Essentially it's just
setting ThreeJS up so that it renders a flat surface upon which to draw 
the shader. The only thing to see here really is the uniforms sent to 
the shader. Apart from that all of the magic happens in the HTML view
under the fragment shader.
*/

let container;
let camera, scene, renderer;
let uniforms;

let divisor = 1 / 8;
let textureFraction = 1 / 1;

let newmouse = {
  x: 0,
  y: 0
};

let loader=new THREE.TextureLoader();
let texture, rtTexture, rtTexture2, environment, pooltex;
loader.setCrossOrigin("anonymous");
loader.load(
  'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/noise.png',
  (tex) => {
    texture = tex;
    texture.wrapS = THREE.RepeatWrapping;
    texture.wrapT = THREE.RepeatWrapping;
    texture.minFilter = THREE.LinearFilter;
    
    loader.load( 
      'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/env_lat-lon.png',
      function environment_load(tex) {
        environment = tex;
        environment.wrapS = THREE.RepeatWrapping;
        environment.wrapT = THREE.RepeatWrapping;
        environment.minFilter = THREE.NearestMipMapNearestFilter;
        
        loader.load(
          'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/tiling-mosaic.jpg',
          function environment_load(tex) {
            pooltex = tex;
            pooltex.wrapS = THREE.RepeatWrapping;
            pooltex.wrapT = THREE.RepeatWrapping;
            pooltex.minFilter = THREE.NearestMipMapNearestFilter;
            
            init();
            animate();
          }
        )
      }
    );
  }
);

function init() {
  container = document.getElementById( 'container' );

  camera = new THREE.Camera();
  camera.position.z = 1;

  scene = new THREE.Scene();

  var geometry = new THREE.PlaneBufferGeometry( 2, 2 );
  
  rtTexture = new THREE.WebGLRenderTarget(Math.floor(window.innerWidth * textureFraction), Math.floor(window.innerHeight * textureFraction), { type: THREE.FloatType, minFilter: THREE.NearestMipMapNearestFilter });
  rtTexture2 = new THREE.WebGLRenderTarget(Math.floor(window.innerWidth * textureFraction), Math.floor(window.innerHeight * textureFraction), { type: THREE.FloatType, minFilter: THREE.NearestMipMapNearestFilter });
  

  uniforms = {
    u_time: { type: "f", value: 1.0 },
    u_resolution: { type: "v2", value: new THREE.Vector2() },
    u_noise: { type: "t", value: texture },
    u_buffer: { type: "t", value: rtTexture.texture },
    u_texture: { type: "t", value: pooltex }, 
    u_environment: { type: "t", value: environment },
    u_mouse: { type: "v3", value: new THREE.Vector3() },
    u_frame: { type: "i", value: -1. },
    u_renderpass: { type: 'b', value: false }
  };

  var material = new THREE.ShaderMaterial( {
    uniforms: uniforms,
    vertexShader: document.getElementById( 'vertexShader' ).textContent,
    fragmentShader: document.getElementById( 'fragmentShader' ).textContent
  } );
  material.extensions.derivatives = true;

  var mesh = new THREE.Mesh( geometry, material );
  scene.add( mesh );

  renderer = new THREE.WebGLRenderer();
  // renderer.setPixelRatio( window.devicePixelRatio );

  container.appendChild( renderer.domElement );

  onWindowResize();
  window.addEventListener( 'resize', onWindowResize, false );
  

  document.addEventListener('pointermove', (e)=> {
    let ratio = window.innerHeight / window.innerWidth;
    if(window.innerHeight > window.innerWidth) {
      newmouse.x = (e.pageX - window.innerWidth / 2) / window.innerWidth;
      newmouse.y = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1 * ratio;
    } else {
      newmouse.x = (e.pageX - window.innerWidth / 2) / window.innerWidth / ratio;
      newmouse.y = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1;
    }
    
    e.preventDefault();
  });
  document.addEventListener('pointerdown', ()=> {
    uniforms.u_mouse.value.z = 1;
  });
  document.addEventListener('pointerup', ()=> {
    uniforms.u_mouse.value.z = 0;
  });
}

function onWindowResize( event ) {
  renderer.setSize( window.innerWidth, window.innerHeight );
  uniforms.u_resolution.value.x = renderer.domElement.width;
  uniforms.u_resolution.value.y = renderer.domElement.height;
  
  rtTexture = new THREE.WebGLRenderTarget(window.innerWidth * textureFraction, window.innerHeight * textureFraction);
  rtTexture2 = new THREE.WebGLRenderTarget(window.innerWidth * textureFraction, window.innerHeight * textureFraction);
  
  uniforms.u_frame.value = -1;
}

function animate(delta) {
  requestAnimationFrame( animate );
  render(delta);
}






let capturer = new CCapture( { 
  verbose: true, 
  framerate: 60,
  // motionBlurFrames: 4,
  quality: 90,
  format: 'webm',
  workersPath: 'js/'
 } );
let capturing = false;

isCapturing = function(val) {
  if(val === false && window.capturing === true) {
    capturer.stop();
    capturer.save();
  } else if(val === true && window.capturing === false) {
    capturer.start();
  }
  capturing = val;
}
toggleCapture = function() {
  isCapturing(!capturing);
}

window.addEventListener('keyup', function(e) { if(e.keyCode == 68) toggleCapture(); });

let then = 0;
function renderTexture(delta) {
  // let ov = uniforms.u_buff.value;
  
  let odims = uniforms.u_resolution.value.clone();
  uniforms.u_resolution.value.x = window.innerWidth * textureFraction;
  uniforms.u_resolution.value.y = window.innerHeight * textureFraction;

  uniforms.u_buffer.value = rtTexture2.texture;
  
  uniforms.u_renderpass.value = true;
  
//   rtTexture = rtTexture2;
//   rtTexture2 = buffer;
  
  window.rtTexture = rtTexture;
  renderer.setRenderTarget(rtTexture);
  renderer.render( scene, camera, rtTexture, true );
  
  let buffer = rtTexture
  rtTexture = rtTexture2;
  rtTexture2 = buffer;

  // uniforms.u_buff.value = ov;

  uniforms.u_buffer.value = rtTexture.texture;
  uniforms.u_resolution.value = odims;
  uniforms.u_renderpass.value = false;
}
let beta = Math.random() * -1000;
function render(delta) {
  uniforms.u_frame.value++;
  
  uniforms.u_mouse.value.x += ( newmouse.x - uniforms.u_mouse.value.x ) * divisor;
  uniforms.u_mouse.value.y += ( newmouse.y - uniforms.u_mouse.value.y ) * divisor;
  
  uniforms.u_time.value = beta + delta * 0.0005;
  renderer.render( scene, camera );
  renderTexture();
  
  if(capturing) {
    capturer.capture( renderer.domElement );
  }
}
              
            
!
999px

Console