HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<script src="https://cdnjs.cloudflare.com/ajax/libs/three.js/88/three.min.js"></script>
<script id="vertexShader" type="x-shader/x-vertex">
void main() {
gl_Position = vec4( position, 1.0 );
}
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
uniform vec2 u_resolution;
uniform float u_time;
uniform vec2 u_mouse;
const int octaves = 2;
const float seed = 43758.5453123;
const float seed2 = 73156.8473192;
// Epsilon value
const float eps = 0.005;
const vec3 ambientLight = 0.99 * vec3(1.0, 1.0, 1.0);
const vec3 light1Pos = vec3(10., 5.0, -25.0);
const vec3 light1Intensity = vec3(0.35);
const vec3 light2Pos = vec3(-20., -25.0, 85.0);
const vec3 light2Intensity = vec3(0.2);
// movement variables
vec3 movement = vec3(.0);
float modemix;
// Gloable variables for the raymarching algorithm.
const int maxIterations = 512;
const int maxIterationsShad = 16;
const float stepScale = .7;
const float stopThreshold = 0.01;
mat4 rotationMatrix(vec3 axis, float angle)
{
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0);
}
float length2( vec2 p )
{
return sqrt( p.x*p.x + p.y*p.y );
}
float length6( vec2 p )
{
p = p*p*p; p = p*p;
return pow( p.x + p.y, 1.0/6.0 );
}
float length8( vec2 p )
{
p = p*p; p = p*p; p = p*p;
return pow( p.x + p.y, 1.0/8.0 );
}
// Distance function primitives
// Reference: http://iquilezles.org/www/articles/distfunctions/distfunctions.htm
float sdBox( vec3 p, vec3 b )
{
vec3 d = abs(p) - b;
return min(max(d.x,max(d.y,d.z)),0.0) + length(max(d,0.0));
}
float udBox( vec3 p, vec3 b )
{
return length(max(abs(p)-b,0.0));
}
float udRoundBox( vec3 p, vec3 b, float r )
{
return length(max(abs(p)-b,0.0))-r;
}
float sdSphere( vec3 p, float s )
{
return length(p)-s;
}
float sdCylinder( vec3 p, vec3 c )
{
return length(p.xz-c.xy)-c.z;
}
float sdCappedCylinder( vec3 p, vec2 h )
{
vec2 d = abs(vec2(length(p.xz),p.y)) - h;
return min(max(d.x,d.y),0.0) + length(max(d,0.0));
}
float sdTorus82( vec3 p, vec2 t )
{
vec2 q = vec2(length2(p.xz)-t.x,p.y);
return length8(q)-t.y;
}
float sdPlane( vec3 p)
{
return p.y;
}
// smooth min
// reference: http://iquilezles.org/www/articles/smin/smin.htm
float smin(float a, float b, float k) {
float res = exp(-k*a) + exp(-k*b);
return -log(res)/k;
}
vec3 random3( vec3 p ) {
return fract(sin(vec3(dot(p,vec3(127.1,311.7,319.8)),dot(p,vec3(269.5,183.3, 415.2)),dot(p,vec3(362.9,201.5,134.7))))*43758.5453);
}
vec2 random2( vec2 p ) {
return fract(sin(vec2(dot(p,vec2(127.1,311.7)),dot(p,vec2(269.5,183.3))))*43758.5453);
}
// The world!
float world_sdf(in vec3 p) {
float world = 10.;
vec3 _p = p;
modemix = cos(p.z / 50.) + 1. * .5;
p.y *= sin(p.z / 10.) * .4;
p.x *= cos(p.z / 10.) * .4;
vec2 polar = vec2(atan(p.y, p.x), length(p.xy));
// The edge of the tunnel. Set at a radius of one, plus the depth.
world = 1.5 - polar.y;
float world1 = min(world, world - abs(clamp(cos(p.z * 2.), -.98, .98)) * .3);
world = min(world, world - sin(p.z));
world1 += p.x * .3;
world1 += p.y * .3;
polar = vec2(atan(_p.y, _p.x), length(_p.xy));
world1 = smin(world1, _p.y + 4., 2.); // The floor
world = mix(world, world1, modemix);
// float tun = polar.y;
return world;
}
// Fuck yeah, normals!
vec3 calculate_normal(in vec3 p)
{
const vec3 small_step = vec3(0.0001, 0.0, 0.0);
float gradient_x = world_sdf(vec3(p.x + eps, p.y, p.z)) - world_sdf(vec3(p.x - eps, p.y, p.z));
float gradient_y = world_sdf(vec3(p.x, p.y + eps, p.z)) - world_sdf(vec3(p.x, p.y - eps, p.z));
float gradient_z = world_sdf(vec3(p.x, p.y, p.z + eps)) - world_sdf(vec3(p.x, p.y, p.z - eps));
vec3 normal = vec3(gradient_x, gradient_y, gradient_z);
return normalize(normal);
}
// Raymarching.
float rayMarching( vec3 origin, vec3 dir, float start, float end, inout float field ) {
float sceneDist = 1e4;
float rayDepth = start;
for ( int i = 0; i < maxIterations; i++ ) {
sceneDist = world_sdf( origin + dir * rayDepth ); // Distance from the point along the ray to the nearest surface point in the scene.
if (( sceneDist < stopThreshold ) || (rayDepth >= end)) {
break;
}
// We haven't hit anything, so increase the depth by a scaled factor of the minimum scene distance.
rayDepth += sceneDist * stepScale;
}
if ( sceneDist >= stopThreshold ) rayDepth = end;
else rayDepth += sceneDist;
// We've used up our maximum iterations. Return the maximum distance.
return rayDepth;
}
// Shadows
// Reference at: http://www.iquilezles.org/www/articles/rmshadows/rmshadows.htm
float softShadow(vec3 ro, vec3 lightPos, float start, float k){
vec3 rd = lightPos - ro;
float end = length(rd);
float shade = 1.0;
float dist = start;
float stepDist = start;
for (int i=0; i<maxIterationsShad; i++){
float h = world_sdf(ro + rd*dist);
shade = min(shade, k*h/dist);
dist += min(h, stepDist*2.); // The best of both worlds... I think.
if (h<0.001 || dist > end) break;
}
return min(max(shade, 0.) + 0.3, 1.0);
}
// Based on original by IQ - optimized to remove a divide
float calculateAO(vec3 p, vec3 n)
{
const float AO_SAMPLES = 5.0;
float r = 0.0;
float w = 1.0;
for (float i=1.0; i<=AO_SAMPLES; i++)
{
float d0 = i * 0.15; // 1.0/AO_SAMPLES
r += w * (d0 - world_sdf(p + n * d0));
w *= 0.5;
}
return 1.0-clamp(r,0.0,1.0);
}
/**
* Lighting
* This stuff is way way better than the model I was using.
* Courtesy Shane Warne
* Reference: http://raymarching.com/
* -------------------------------------
* */
// Lighting.
vec3 lighting( vec3 sp, vec3 camPos, int reflectionPass, float dist, float field, vec3 rd) {
// Start with black.
vec3 sceneColor = vec3(0.0);
vec3 grid = floor(sp * 100.);
// grid.xy += u_time * .01;
vec2 rand = random2(grid.xy);
vec2 rand6 = random2(vec2(grid.z, grid.x));
vec3 objColor = vec3(.35, .2, .3);
objColor = mix(objColor, vec3(.0, .2, .5), abs(sin(sp.z * .5)));
// objColor = mix(objColor, objColor * objColor, abs(sin((sp.z + sp.y + sp.z)) * 3.) * .5);
// objColor.y *= (rand.y + rand2.y + rand3.y + rand4.y + rand5.y) * .15;
// objColor.z *= (rand.x + rand2.x + rand3.x + rand4.x + rand5.x) * .19;
objColor.y *= rand.y * .2;
objColor.z *= rand.x * .2;
float floor = clamp(sp.y * -1. - 3.2, 0., 1.);
objColor = mix(objColor, vec3(rand6.x * .3 - .5), floor);
// objColor *= .2;
// Obtain the surface normal at the scene position "sp."
vec3 surfNormal = calculate_normal(sp) - (normalize(objColor - .5) * .2);
// surfNormal = calculate_normal(sp) - vec3(rand - .5, 0.) * .02;
// Fake bump mapping with the addition of the object colour
// Lighting.
// lp - Light position. Keeping it in the vacinity of the camera, but away from the objects in the scene.
vec3 lp = vec3(0., 0.0, 15.0) + movement;
// ld - Light direction.
vec3 ld = lp-sp;
// lcolor - Light color.
vec3 lcolor = vec3(1.2) * .8;
// Light falloff (attenuation).
float len = length( ld ); // Distance from the light to the surface point.
ld /= len; // Normalizing the light-to-surface, aka light-direction, vector.
float lightAtten = min( 1.0 / ( 0.005*len*len ), 1.0 ); // Removed light attenuation for this because I want the fade to white
float sceneLen = length(camPos - sp); // Distance of the camera to the surface point
float sceneAtten = min( 1.0 / ( 0.04*sceneLen*sceneLen ), 1.0 ); // Keeps things between 0 and 1.
// Obtain the reflected vector at the scene position "sp."
vec3 ref = reflect(-ld, surfNormal);
float ao = 1.0; // Ambient occlusion.
// ao = calculateAO(sp, surfNormal); // Ambient occlusion.
float ambient = 2.5; //The object's ambient property.
float specularPower = mix(2., 0., floor); // The power of the specularity. Higher numbers can give the object a harder, shinier look.
float diffuse = max( 0.0, dot(surfNormal, ld) ); //The object's diffuse value.
float specular = max( 0.0, dot( ref, normalize(camPos-sp)) ); //The object's specular value.
specular = pow(specular, specularPower); // Ramping up the specular value to the specular power for a bit of shininess.
// Bringing all the lighting components togethr to color the screen pixel.
sceneColor += (objColor*(diffuse*0.8+ambient)+specular*0.5)*lcolor*1.3*lightAtten*ao;
// sceneColor = mix(sceneColor, vec3(1.), 1.-sceneAtten); // fog
// float shadow = softShadow(sp, lp, .1, .3);
// sceneColor *= shadow;
return sceneColor;
}
void main() {
// Setting up our screen coordinates.
vec2 aspect = vec2(u_resolution.x/u_resolution.y, 1.0); //
vec2 uv = (2.0*gl_FragCoord.xy/u_resolution.xy - 1.0)*aspect;
// This just gives us a touch of fisheye
// uv *= 1. + dot(uv, uv) * 0.4;
// movement
movement.z = u_time / .5;
// The sin in here is to make it look like a walk.
vec3 lookAt = vec3(-0., 0., 0.); // This is the point you look towards, or at, if you prefer.
vec3 camera_position = vec3(0., 0., -1.);
// vec3 camera_position = vec3(clamp(0.5 - u_mouse.x / u_resolution.x, -.5, .5), 0. + u_mouse.y / u_resolution.y - .5, -1.0); // This is the point you look from, or camera you look at the scene through. Whichever way you wish to look at it.
lookAt += movement;
lookAt.y += 0.5 - u_mouse.y;
lookAt.x -= 0.5 - u_mouse.x;
camera_position += movement;
vec3 forward = normalize(lookAt-camera_position); // Forward vector.
vec3 right = normalize(vec3(forward.z, 0., -forward.x )); // Right vector... or is it left? Either way, so long as the correct-facing up-vector is produced.
vec3 up = normalize(cross(forward,right)); // Cross product the two vectors above to get the up vector.
// FOV - Field of view.
float FOV = 0.4;
// ro - Ray origin.
vec3 ro = camera_position;
// rd - Ray direction.
vec3 rd = normalize(forward + FOV*uv.x*right + FOV*uv.y*up);
// Ray marching.
const float clipNear = 0.0;
const float clipFar = 128.0;
float field = 0.;
float dist = rayMarching(ro, rd, clipNear, clipFar, field );
if ( dist >= clipFar ) {
gl_FragColor = vec4(vec3(0.), 1.0);
return;
}
// sp - Surface position. If we've made it this far, we've hit something.
vec3 sp = ro + rd*dist;
// Light the pixel that corresponds to the surface position. The last entry indicates that it's not a reflection pass
// which we're not up to yet.
vec3 sceneColor = lighting( sp, camera_position, 0, dist, field, rd);
// Clamping the lit pixel, then put it on the screen.
gl_FragColor = vec4(clamp(sceneColor, 0.0, 1.0), 1.0);
}
</script>
<div id="container"></div>
body {
margin: 0;
padding: 0;
}
#container {
position: fixed;
}
/*
Most of the stuff in here is just bootstrapping. Essentially it's just
setting ThreeJS up so that it renders a flat surface upon which to draw
the shader. The only thing to see here really is the uniforms sent to
the shader. Apart from that all of the magic happens in the HTML view
under the fragment shader.
*/
let container;
let camera, scene, renderer;
let uniforms;
function init() {
container = document.getElementById( 'container' );
camera = new THREE.Camera();
camera.position.z = 1;
scene = new THREE.Scene();
var geometry = new THREE.PlaneBufferGeometry( 2, 2 );
uniforms = {
u_time: { type: "f", value: 1.0 },
u_resolution: { type: "v2", value: new THREE.Vector2() },
u_mouse: { type: "v2", value: new THREE.Vector2(.5,.5) }
};
var material = new THREE.ShaderMaterial( {
uniforms: uniforms,
vertexShader: document.getElementById( 'vertexShader' ).textContent,
fragmentShader: document.getElementById( 'fragmentShader' ).textContent
} );
var mesh = new THREE.Mesh( geometry, material );
scene.add( mesh );
renderer = new THREE.WebGLRenderer();
renderer.setPixelRatio(1);
container.appendChild( renderer.domElement );
onWindowResize();
window.addEventListener( 'resize', onWindowResize, false );
document.onmousemove = function(e){
uniforms.u_mouse.value.x = e.pageX / window.innerWidth;
uniforms.u_mouse.value.y = e.pageY / window.innerHeight;
}
}
function onWindowResize( event ) {
renderer.setSize( window.innerWidth, window.innerHeight );
uniforms.u_resolution.value.x = renderer.domElement.width;
uniforms.u_resolution.value.y = renderer.domElement.height;
}
function animate() {
requestAnimationFrame( animate );
render();
}
function render() {
uniforms.u_time.value += 0.05;
renderer.render( scene, camera );
}
init();
animate();
Also see: Tab Triggers