Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel is required to process package imports. If you need a different preprocessor remove all packages first.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <canvas id="webgl" width="500" height="1758"></canvas>

<script id="vertexShader" type="x-shader/x-vertex">
  attribute vec4 a_position;
  
  uniform mat4 u_modelViewMatrix;
  uniform mat4 u_projectionMatrix;
  
  void main() {
    gl_Position = a_position;
  }
</script>
<script id="fragmentShader" type="x-shader/x-fragment">
 precision highp float;
  precision highp int;
  
  uniform vec2 u_resolution;
  uniform vec2 u_mouse;
  uniform float u_time;
  uniform sampler2D u_noise;
  
  // movement variables
  vec3 movement = vec3(.0);
  
  const int maxIterations = 256;
  const float stopThreshold = 0.001;
  const float stepScale = .5;
  const float eps = 0.005;
  const vec3 clipColour = vec3(0.);
  const vec3 fogColour = vec3(0.);
  
  const vec3 light1_position = vec3(0, 1., -1.);
  const vec3 light1_colour = vec3(.8, .8, .85);
  
  struct Surface {
    int object_id;
    float distance;
    vec3 position;
    vec3 colour;
    float ambient;
    float spec;
  };
  
  vec3 path(float z) {
    const float multiplier = 5.;
    float t = z * multiplier;
    return vec3(sin(t*.1),cos(t*.1),t);
  }
  // polynomial smooth min (k = 0.1);
  float sminCubic( float a, float b, float k )
  {
      float h = max( k-abs(a-b), 0.0 )/k;
      return min( a, b ) - h*h*h*k*(1.0/6.0);
  }
  
  // This function describes the world in distances from any given 3 dimensional point in space
  float world(in vec3 position, inout int object_id) {
    
    // vec3 p = path(position.z);
    float s = sin(position.z*.1);
    float c = cos(position.z*.1);
    mat2 rot = mat2(s, c, -c, s);
    position.xy *= rot;
    
    // vec3 pos = floor((position + vec3(0,0,u_time*5.)) * .5 * length(position*.0005));
    // vec3 pos = floor(mod(position, 2.) * vec3(1, 1, .5) * length(position*.0005));
    // object_id = int(mod(floor(pos.x + pos.y + pos.z), 2.));
    vec3 pos = mod(position * 2., 2.) - 1.;
    object_id = int(mod(floor(pos.x * pos.y * pos.z), 2.));
    
    vec3 pillarpos = position;
    pillarpos.x -= 1.;
    pillarpos.xz = mod(pillarpos.xz, 3.) - 1.5;
    // pillarpos.z = mod(pillarpos.x, 3.) - 1.5;
    
    // return length(pillarpos.xz) - .1;
    
    return sminCubic(min(position.y + .5, 2. - position.y), length(pillarpos.xz) - .3, .5);
  }
  float world(in vec3 position) {
    int dummy = 0;
    return world(position, dummy);
  }
  
  vec3 getObjectColour(int object_id) {
    float modid = mod(float(object_id), 5.);
    if(modid == 0.) {
      return vec3(0.8);
    }
    return vec3(0.2);
  }
  
  Surface getSurface(int object_id, float rayDepth, vec3 sp) {
    return Surface(
      object_id, 
      rayDepth, 
      sp, 
      getObjectColour(object_id), 
      .5, 
      200.);
  }
  
  // The raymarch loop
  Surface rayMarch(vec3 ro, vec3 rd, float start, float end) {
    float sceneDist = 1e4;
    float rayDepth = start;
    int object_id = 0;
    for(int i = 0; i < maxIterations; i++) {
      sceneDist = world(ro + rd * rayDepth, object_id);
      
      if(sceneDist < stopThreshold || rayDepth > end) {
        break;
      }
      
      rayDepth += sceneDist * stepScale;
    }
    
    return getSurface(object_id, rayDepth, ro + rd * rayDepth);
  }
  
  // Calculated the normal of any given point in space. Intended to be cast from the point of a surface
  vec3 calculate_normal(in vec3 position) {
    vec3 grad = vec3(
      world(vec3(position.x + eps, position.y, position.z)) - world(vec3(position.x - eps, position.y, position.z)),
      world(vec3(position.x, position.y + eps, position.z)) - world(vec3(position.x, position.y - eps, position.z)),
      world(vec3(position.x, position.y, position.z + eps)) - world(vec3(position.x, position.y, position.z - eps))
    );
    
    return normalize(grad);
  }
  
  float calcSoftshadow( in vec3 ro, in vec3 rd, in float mint, in float tmax ) {
    float res = 1.0;
      float t = mint;
      float ph = 1e10; // big, such that y = 0 on the first iteration

      for( int i=0; i<32; i++ ) {
        float h = world( ro + rd*t );
        float y = h*h/(2.0*ph);
        float d = sqrt(h*h-y*y);
        res = min( res, 10.0*d/max(0.0,t-y) );
        ph = h;

        t += h;

        if( res<0.0001 || t>tmax ) break;

      }
      return clamp( res, 0.0, 1.0 );
  }
  
  vec3 lighting(Surface surface_object, vec3 cam) {
    
    // start with black
    vec3 sceneColour = vec3(0);
    
    // Surface normal
    vec3 normal = calculate_normal(surface_object.position);
    
    // Light position
    vec3 lp = cam+10.;    // Light direction
    vec3 ld = lp - surface_object.position;
    
    // light attenuation
    // For brightly lit scenes or global illumination (like sunlit), this can be limited to just normalizing the ld
    float len = length( ld );
    ld = normalize(ld);
    float lightAtten = min( 1.0 / ( 0.15*len ), 1.0 );
    lightAtten = 1.;
    
    // Scene values, mainly for fog
    float sceneLength = length(cam - surface_object.position);
    float sceneAttenuation = min( 1. / ( 0.05 * sceneLength * sceneLength ), 1. );
    
    // The surface's light reflection normal
    vec3 reflection_normal = reflect(-ld, normal);
    
    // Ambient Occlusion
    float ao = 1.;
    
    // float shadows = calcSoftshadow( surface_object.position, ld, .00001, 1. );
    
    // Object surface properties
    float diffuse = max(0., dot(normal, ld));
    float specular = max(0., dot( reflection_normal, normalize(cam - surface_object.position) ));
    
    // Bringing all of the lighting components together
    sceneColour += ( surface_object.colour * (diffuse + surface_object.ambient) + specular ) * light1_colour * lightAtten;
    // adding fog
    sceneColour = mix( sceneColour, fogColour, 1. - sceneAttenuation );
    
    return sceneColour;
  }

  void main() {
    vec2 uv = (gl_FragCoord.xy - 0.5 * u_resolution.xy) / min(u_resolution.y, u_resolution.x);
    
    // movement
    movement = path(u_time);
    vec3 movement2 = path(u_time-2.);
    
    // Camera and look-at
    vec3 cam = vec3(0, 0, 0);
    vec3 lookAt = vec3(-.1, 0, 1);
    lookAt.xy += u_mouse * 3.;
    
    // add movement
    lookAt += movement;
    cam += movement;
    
    // Unit vectors
    vec3 forward = normalize(lookAt - cam);
    vec3 right = normalize(vec3(forward.z, 0., -forward.x));
    vec3 up = normalize(cross(forward, right));
    
    // FOVs
    float FOV = 1.1;
    
    // Ray origin and ray direction
    vec3 ro = cam;
    vec3 rd = normalize(forward + FOV * uv.x * right + FOV * uv.y * up);
    rd.xy *= mat2(movement2.y, movement2.x, -movement2.x, movement2.y);
    
    // Ray marching
    const float clipNear = 0.;
    const float clipFar = 32.;
    Surface objectSurface = rayMarch(ro, rd, clipNear, clipFar);
    if(objectSurface.distance > clipFar) {
      gl_FragColor = vec4(clipColour, 1.);
      return;
    }
    
    vec3 sceneColour = lighting(objectSurface, cam);
    // vec3 sceneColour = vec3(dist*.1);
    
    gl_FragColor = vec4(sceneColour, 1.);
  }
  
</script>
              
            
!

CSS

              
                body {
  margin:0;
}

canvas {
  height: 100vh !important;
  position: fixed;
  width: 100vw !important;
}
              
            
!

JS

              
                console.clear();

const twodWebGL = new WTCGL(
  document.querySelector('canvas#webgl'), 
  document.querySelector('script#vertexShader').textContent, 
  document.querySelector('script#fragmentShader').textContent,
  window.innerWidth,
  window.innerHeight,
  1,
  false
);
twodWebGL.startTime = -100;

let debounce;
window.addEventListener('resize', () => {
  clearInterval(debounce);
  debounce = setInterval(() => {
    twodWebGL.resize(window.innerWidth, window.innerHeight);
  }, 100);
});






// track mouse move
let mousepos = [0,0];
const u_mousepos = twodWebGL.addUniform('mouse', WTCGL.TYPE_V2, mousepos);
window.addEventListener('pointermove', e => {
  let ratio = window.innerHeight / window.innerWidth;
  if(ratio > 1) {
    mousepos[0] = (e.pageX - window.innerWidth / 2) / window.innerWidth;
    mousepos[1] = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1 * ratio;
  } else {
    mousepos[0] = (e.pageX - window.innerWidth / 2) / window.innerWidth / ratio;
    mousepos[1] = (e.pageY - window.innerHeight / 2) / window.innerHeight * -1;
  }
  twodWebGL.addUniform('mouse', WTCGL.TYPE_V2, mousepos);
});









// Load all our textures. We only initiate the instance once all images are loaded.
const textures = [
  {
    name: 'noise',
    url: 'https://s3-us-west-2.amazonaws.com/s.cdpn.io/982762/noise.png',
    type: WTCGL.IMAGETYPE_TILE,
    img: null
  }
];
const loadImage = function (imageObject) {
  let img = document.createElement('img');
  img.crossOrigin="anonymous";
  
  return new Promise((resolve, reject) => {
    img.addEventListener('load', (e) => {
      imageObject.img = img;
      resolve(imageObject);
    });
    img.addEventListener('error', (e) => {
      reject(e);
    });
    img.src = imageObject.url
  });
}
const loadTextures = function(textures) {
  return new Promise((resolve, reject) => {
    const loadTexture = (pointer) => {
      if(pointer >= textures.length || pointer > 10) {
        resolve(textures);
        return;
      };
      const imageObject = textures[pointer];

      const p = loadImage(imageObject);
      p.then(
        (result) => {
          twodWebGL.addTexture(result.name, result.type, result.img);
        },
        (error) => {
          console.log('error', error)
        }).finally((e) => {
          loadTexture(pointer+1);
      });
    }
    loadTexture(0);
  });
  
}

loadTextures(textures).then(
  (result) => {
    twodWebGL.initTextures();
    // twodWebGL.render();
    twodWebGL.running = true;
  },
  (error) => {
    console.log('error');
  }
);
              
            
!
999px

Console