Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
              
            
!

CSS

              
                body
	background: #222

canvas
	position: absolute
	top: 50%
	left: 50%
	transform: translate3d(-50%, -50%, 0)
	border-radius: 30px
	box-shadow: 0 0 24px 8px rgba(0, 0, 0, 0.2)
	cursor: pointer

              
            
!

JS

              
                const PX = 600;
const FLOORS = 8;
const ITERATIONS = 1;
const FG = [102, 199, 244];
const BG = [34, 34, 34];
const HOURS = 6;
const HOUR_OFFSET = 0.5;
const SPACING = 110;
const LINE_WIDTH = 40;

const DEBUG_SMALL = false;
const DEBUG_HOURS = [];
const DEBUG_NO_CURVES = false;

const {abs, cos, floor, PI, round, random, sign, sin, sqrt} = Math;
const R = SPACING * sqrt(3)/4;
const canvas = document.createElement('canvas');
canvas.height = canvas.width = PX;
canvas.style.height = canvas.style.width = `${PX / 2}px`;
canvas.style.background = `rgb(${BG})`;
document.body.appendChild(canvas);

const ctx = canvas.getContext('2d');
// Flip the y-axis.
ctx.transform(1, 0, 0, -1, 0, PX);
ctx.lineWidth = LINE_WIDTH;
ctx.fillStyle = `rgba(${BG}, ${1.4 / FLOORS})`;

function go () {
	ctx.clearRect(0, 0, PX, PX);

	if (DEBUG_SMALL === true) {
		ctx.strokeStyle = '#fff';
		ctx.rect(PX / 4, PX / 4, PX / 2, PX / 2);
		ctx.stroke();
	}

	for (let floor = 0; floor < FLOORS; ++floor) {
		ctx.fillRect(0, 0, PX, PX);
		console.log('fillin');
	
		for (let n = 0; n < ITERATIONS; ++n) {
			// Don't introduce PI etc to θ yet to avoid some precision hassles.
			let hour = rand(HOURS);
			let θ = (hour + HOUR_OFFSET) / HOURS * 2*PI;
			let opacity = 1;

			if (DEBUG_HOURS.length && DEBUG_HOURS.indexOf(hour) === -1) continue;
			const p = getPosition(hour, θ);

			do {
				ctx.strokeStyle = `rgb(${FG})`;

				ctx.beginPath();
				if (DEBUG_NO_CURVES || rand(10)) {
					// Draw a line straight ahead.
					DEBUG_SMALL
						? ctx.moveTo(p.x / 2 + PX / 4, p.y / 2 + PX / 4)
						: ctx.moveTo(p.x, p.y)
						;

					p.x += SPACING * cos(θ);
					p.y += SPACING * sin(θ);

					DEBUG_SMALL
						? ctx.lineTo(p.x / 2 + PX / 4, p.y / 2 + PX / 4)
						: ctx.lineTo(p.x, p.y)
						;

					ctx.stroke();
				} else {
					// Once in a while, turn.
					const Δ_hour = 2*rand(2) - 1; // +/- 1
					const θ_1 = θ - PI/2 * Δ_hour;

					// Add or subtract an hour and update the angle.
					hour = (hour + Δ_hour) % HOURS;
					θ = (hour + HOUR_OFFSET) / HOURS * 2*PI;
					const θ_2 = θ - PI/2 * Δ_hour;

					p.x += R * cos(θ_1 + PI);
					p.y += R * sin(θ_1 + PI);

					ctx.arc(
						p.x,
						p.y,
						R,
						θ_1,
						θ_2,
						Δ_hour < 0
					);

					p.x += R * cos(θ_2);
					p.y += R * sin(θ_2);
				}
				ctx.stroke();
			} while (
				p.x > -SPACING && p.x < PX + SPACING &&
				p.y > -SPACING && p.y < PX + SPACING &&
				opacity > 0
			);
		}
	}
}

// Set the position so that the lines come out of the appropriate
// wall (based on direction), in a random cell.
function getPosition (hour, θ) {
	const cos_θ = +cos(θ).toFixed(6);
	const sin_θ = +sin(θ).toFixed(6);
	const abs_cos_θ = +abs(cos_θ);
	const abs_sin_θ = +abs(sin_θ);

	// One of our axes will be latched to either the min or max value.
	const latched_axis = abs_cos_θ / (abs_sin_θ + abs_cos_θ) > random()
		? 'x'
		: 'y'
		;

	// The other gets a random value within the grid.
	const free_axis = latched_axis === 'x'
		? 'y'
		: 'x'
		;

	// TODO(riley): Generalize.
	const offset = {
		x: SPACING / 3,
		y: SPACING / 2,
	};

	const axis_spacing = {
		x: (abs_cos_θ || sqrt(3)/4) * SPACING,
		y: (abs_sin_θ || sqrt(3)/4) * SPACING,
	};

	// The direction (+1 or -1) of our line coming out of each axis.
	const d = {
		x: sign(cos_θ),
		y: sign(sin_θ),
	};

	// TODO(riley): Factor LINE_WIDTH into this instead of just
	//              forcing it higher.
	const latched_spacing = axis_spacing[latched_axis];
	const p_latched = d[latched_axis] === 1
		? -2*latched_spacing
		: PX - PX % latched_spacing + latched_spacing
		;

	const free_spacing = axis_spacing[free_axis];
	const p_free = free_spacing *
		(rand(Math.ceil(PX / free_spacing + 2)) - 1);

	return {
		[latched_axis]: p_latched + offset[latched_axis],
		[free_axis]: p_free + offset[free_axis],
	};
}

function rand (a, b, c) {
	const fn = (b === 'true' || c) ? i => i : floor;
	if (typeof b !== 'number') { b = a; a = 0; }
	return fn(random() * (b - a) + a);
}

function approx (n) {
	return +(Math.round(n + 'e4') + 'e-4');
}

canvas.addEventListener('click', go, false);
go();

              
            
!
999px

Console