<div class="btn-wrapper">
  <canvas width="450" height="260" id="btn"></canvas>

  <svg class "acc">
    <line class="topL" x1="0" y1="" x2="125" y2="0" />
    <line class="topR" x1="250" y1="" x2="125" y2="0" />

    <line class="bottom" x1="250" y1="60" x2="-500" y2="60" />

    <line class="left" x1="0" y1="0" x2="0" y2="60" />

    <line class="right" x1="250" y1="0" x2="250" y2="60" />
  </svg>
  <button class="btn">
    Flashy button yo
  </button>

</div>
body,
html {
  margin: 0px;
  padding: 0px;
  overflow: hidden;
}

$button-color: #fff;

body {
  background: url("https://i.imgur.com/1MvxU9w.jpg");
  background-size:cover;
}


#btn {
    position: absolute;

}



.btn {
  color: $button-color;
  -webkit-font-smoothing: antialiased;
  font-family: "Gill Sans", "Gill Sans MT", Calibri, sans-serif;
  position: absolute;
  font-size: 1.1rem;
  outline: none;
  border-radius: 3px;
  cursor: pointer;
  width: 250px;
  height: 60px;
  background: rgba(255,255,255,0);
  border: 0px solid $button-color;
  margin:100px 0 0 100px;
}

.btn-wrapper {
  width:450px;
  height:260px;
   position: absolute;
  top: 0;
  bottom: 0;
  left: 0;
  right: 0;
  margin: auto;
	overflow: hidden;
     .topR,  .topL {
    transform: translateX(0);
    -webkit-transition-delay: .2s;

    }

}

.btn-wrapper:hover {
  
  
   .topL {
    transform: translateX(-125px);
               -webkit-transition-delay: 0s;

  }
   .topR {
    transform: translateX(125px);
          -webkit-transition-delay: 0s;

  }
   .left {
    transform: translateY(60px);
    -webkit-transition-delay: .2s;

  }
  .right {
    transform: translateY(60px);
    -webkit-transition-delay: .2s;
  }
}

svg {
  margin:100px 0 0 100px;
	position: absolute;
	top: 0;
	left: 0;
  width: 250px;
  height: 60px;
}


svg line {
	stroke-width: 3;
	stroke: $button-color;
	fill: none;
	transition: all .3s ease-in-out;
}
View Compiled
// © Richard Hedberg 2015

$(function() {

  //Set animation frame
  window.requestAnimationFrame = window.requestAnimationFrame || window.mozRequestAnimationFrame || window.webkitRequestAnimationFrame || window.msRequestAnimationFrame;

  var canvas = $('#btn')[0],
    ctx = canvas.getContext('2d'),
    canvasW = canvas.width,
    canvasH = canvas.height;
  var color = "#fff"

  // Mask for button
  ctx.rect(0, 0, 450, 110);
  ctx.rect(0, 160, 450, 100);
  ctx.rect(0, 100, 100, 60);
  ctx.rect(350, 100, 100, 60);

  // Clip the view of the canvas
  ctx.clip();

  var emitter = {};

  var stops = [0, 125],
    stopIndex = 0,
    delay = 0,
    prog = 0;

  var circle = {
    radius: 125,
    angle: 0
  };

  var particles = new Array();

  var rate = 2,
    time = 0,
    frameIndex = rate;

  var simplex = new SimplexNoise(),
    simplexVal = 0,
    simplexStart = 20;

  //Start loop

  draw();

  $(document).on('mouseenter mouseleave', '.btn', function() {
    stops = [0, 125],
      stopIndex = 0,
      delay = 0,
      prog = 0;
    emitter.dx = 0;
    emitter = {
      h: 60,
      x: canvasW / 2 - 125,
      y: canvasH / 2,
      vx: 5,
      vy: 5,
      v: 0.05,
      dx: 0,
      dy: 0
    };

  });

  //Draw
  function draw() {

    ctx.globalCompositeOperation = 'source-out';
    ctx.fillStyle = 'rgba(0,0,0,0)';
    ctx.fillRect(0, 0, canvasW, canvasH);
    ctx.globalCompositeOperation = 'normal';

    //Move emitter
    if (stops[stopIndex] == prog) {
      stopIndex++;
      delay = 0;
    } else {
      if (delay == 0 && prog < stops[stopIndex]) {
        emitter.dx = -1;
        emitter.x += 20;
        prog += 1 * 10;
      } else {
        emitter.dx = 0;
        delay--;
      }
    }

    //Draw particles
    var i = 0;
    for (i in particles) {
      var p = particles[i];

      //Check if die
      if (time > p.die) {
        p.o -= 0.01;
        if (p.o < 0) {
          particles.splice(i, 1);
        }
      }

      //Add v
      p.x += p.vx;
      p.y += p.vy;

      //Add source move
      p.x += p.sourcedx / 10;
      p.y += p.sourcedy / 10;

      //Simplex noise
      if (p.simplexIndex > simplexStart) {
        p.simplexVal = simplex.noise3D(p.x / 100, p.y / 100, time / 500);
      }

      p.simplexIndex++;
      p.x += p.simplexVal;
      p.y += p.simplexVal;

      ctx.beginPath();
      ctx.fillStyle = color;
      ctx.arc(p.x, p.y, p.r, 0, 2 * Math.PI, true);
      ctx.fill();
      ctx.save();
    }

    //if emitter is moving
    if (emitter.dx !== 0) {
      for (var i = 0; i < rate; i++) {
        //Create particle
        var particle = {
          x: emitter.x,
          y: emitter.y,
          r: Math.random() + 0.2,
          vx: (Math.random() - 0.5),
          vy: (Math.random() - 0.5),
          o: 1,
          birth: time,
          die: time + (Math.random() * 50 + 50), //1+1),
          sourcedx: emitter.dx,
          sourcedy: emitter.dy,
          red: Math.round(Math.random() * 255),
          green: Math.round(Math.random() * 255),
          blue: Math.round(Math.random() * 255),
          simplexVal: 0,
          simplexIndex: 0
        };

        particles.push(particle);
      }
    }

    time++;
    window.requestAnimationFrame(draw);
  }

});

/*
 * A fast javascript implementation of simplex noise by Jonas Wagner
 *
 * Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
 * Which is based on example code by Stefan Gustavson (stegu@itn.liu.se).
 * With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 * Better rank ordering method by Stefan Gustavson in 2012.
 *
 *
 * Copyright (C) 2012 Jonas Wagner
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */
(function() {

  var F2 = 0.5 * (Math.sqrt(3.0) - 1.0),
    G2 = (3.0 - Math.sqrt(3.0)) / 6.0,
    F3 = 1.0 / 3.0,
    G3 = 1.0 / 6.0,
    F4 = (Math.sqrt(5.0) - 1.0) / 4.0,
    G4 = (5.0 - Math.sqrt(5.0)) / 20.0;

  function SimplexNoise(random) {
    if (!random) random = Math.random;
    this.p = new Uint8Array(256);
    this.perm = new Uint8Array(512);
    this.permMod12 = new Uint8Array(512);
    for (var i = 0; i < 256; i++) {
      this.p[i] = random() * 256;
    }
    for (i = 0; i < 512; i++) {
      this.perm[i] = this.p[i & 255];
      this.permMod12[i] = this.perm[i] % 12;
    }

  }
  SimplexNoise.prototype = {
    grad3: new Float32Array([1, 1, 0, -1, 1, 0,
      1, -1, 0,

      -1, -1, 0,
      1, 0, 1, -1, 0, 1,

      1, 0, -1, -1, 0, -1,
      0, 1, 1,

      0, -1, 1,
      0, 1, -1,
      0, -1, -1
    ]),
    grad4: new Float32Array([0, 1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1,
      0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1,
      1, 0, 1, 1, 1, 0, 1, -1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 1, 1, -1, 0, 1, -1, -1, 0, -1, 1, -1, 0, -1, -1,
      1, 1, 0, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -1, 0, -1, -1, 1, 0, 1, -1, 1, 0, -1, -1, -1, 0, 1, -1, -1, 0, -1,
      1, 1, 1, 0, 1, 1, -1, 0, 1, -1, 1, 0, 1, -1, -1, 0, -1, 1, 1, 0, -1, 1, -1, 0, -1, -1, 1, 0, -1, -1, -1, 0
    ]),
    noise2D: function(xin, yin) {
      var permMod12 = this.permMod12,
        perm = this.perm,
        grad3 = this.grad3;
      var n0 = 0,
        n1 = 0,
        n2 = 0; // Noise contributions from the three corners
      // Skew the input space to determine which simplex cell we're in
      var s = (xin + yin) * F2; // Hairy factor for 2D
      var i = Math.floor(xin + s);
      var j = Math.floor(yin + s);
      var t = (i + j) * G2;
      var X0 = i - t; // Unskew the cell origin back to (x,y) space
      var Y0 = j - t;
      var x0 = xin - X0; // The x,y distances from the cell origin
      var y0 = yin - Y0;
      // For the 2D case, the simplex shape is an equilateral triangle.
      // Determine which simplex we are in.
      var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
      if (x0 > y0) {
        i1 = 1;
        j1 = 0;
      } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
      else {
        i1 = 0;
        j1 = 1;
      } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
      // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
      // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
      // c = (3-sqrt(3))/6
      var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
      var y1 = y0 - j1 + G2;
      var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
      var y2 = y0 - 1.0 + 2.0 * G2;
      // Work out the hashed gradient indices of the three simplex corners
      var ii = i & 255;
      var jj = j & 255;
      // Calculate the contribution from the three corners
      var t0 = 0.5 - x0 * x0 - y0 * y0;
      if (t0 >= 0) {
        var gi0 = permMod12[ii + perm[jj]] * 3;
        t0 *= t0;
        n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient
      }
      var t1 = 0.5 - x1 * x1 - y1 * y1;
      if (t1 >= 0) {
        var gi1 = permMod12[ii + i1 + perm[jj + j1]] * 3;
        t1 *= t1;
        n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1);
      }
      var t2 = 0.5 - x2 * x2 - y2 * y2;
      if (t2 >= 0) {
        var gi2 = permMod12[ii + 1 + perm[jj + 1]] * 3;
        t2 *= t2;
        n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2);
      }
      // Add contributions from each corner to get the final noise value.
      // The result is scaled to return values in the interval [-1,1].
      return 70.0 * (n0 + n1 + n2);
    },
    // 3D simplex noise
    noise3D: function(xin, yin, zin) {
      var permMod12 = this.permMod12,
        perm = this.perm,
        grad3 = this.grad3;
      var n0, n1, n2, n3; // Noise contributions from the four corners
      // Skew the input space to determine which simplex cell we're in
      var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
      var i = Math.floor(xin + s);
      var j = Math.floor(yin + s);
      var k = Math.floor(zin + s);
      var t = (i + j + k) * G3;
      var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
      var Y0 = j - t;
      var Z0 = k - t;
      var x0 = xin - X0; // The x,y,z distances from the cell origin
      var y0 = yin - Y0;
      var z0 = zin - Z0;
      // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
      // Determine which simplex we are in.
      var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
      var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
      if (x0 >= y0) {
        if (y0 >= z0) {
          i1 = 1;
          j1 = 0;
          k1 = 0;
          i2 = 1;
          j2 = 1;
          k2 = 0;
        } // X Y Z order
        else if (x0 >= z0) {
          i1 = 1;
          j1 = 0;
          k1 = 0;
          i2 = 1;
          j2 = 0;
          k2 = 1;
        } // X Z Y order
        else {
          i1 = 0;
          j1 = 0;
          k1 = 1;
          i2 = 1;
          j2 = 0;
          k2 = 1;
        } // Z X Y order
      } else { // x0<y0
        if (y0 < z0) {
          i1 = 0;
          j1 = 0;
          k1 = 1;
          i2 = 0;
          j2 = 1;
          k2 = 1;
        } // Z Y X order
        else if (x0 < z0) {
          i1 = 0;
          j1 = 1;
          k1 = 0;
          i2 = 0;
          j2 = 1;
          k2 = 1;
        } // Y Z X order
        else {
          i1 = 0;
          j1 = 1;
          k1 = 0;
          i2 = 1;
          j2 = 1;
          k2 = 0;
        } // Y X Z order
      }
      // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
      // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
      // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
      // c = 1/6.
      var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
      var y1 = y0 - j1 + G3;
      var z1 = z0 - k1 + G3;
      var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
      var y2 = y0 - j2 + 2.0 * G3;
      var z2 = z0 - k2 + 2.0 * G3;
      var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
      var y3 = y0 - 1.0 + 3.0 * G3;
      var z3 = z0 - 1.0 + 3.0 * G3;
      // Work out the hashed gradient indices of the four simplex corners
      var ii = i & 255;
      var jj = j & 255;
      var kk = k & 255;
      // Calculate the contribution from the four corners
      var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
      if (t0 < 0) n0 = 0.0;
      else {
        var gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3;
        t0 *= t0;
        n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0);
      }
      var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
      if (t1 < 0) n1 = 0.0;
      else {
        var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3;
        t1 *= t1;
        n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1);
      }
      var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
      if (t2 < 0) n2 = 0.0;
      else {
        var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3;
        t2 *= t2;
        n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2);
      }
      var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
      if (t3 < 0) n3 = 0.0;
      else {
        var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3;
        t3 *= t3;
        n3 = t3 * t3 * (grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3);
      }
      // Add contributions from each corner to get the final noise value.
      // The result is scaled to stay just inside [-1,1]
      return 32.0 * (n0 + n1 + n2 + n3);
    },
    // 4D simplex noise, better simplex rank ordering method 2012-03-09
    noise4D: function(x, y, z, w) {
      var permMod12 = this.permMod12,
        perm = this.perm,
        grad4 = this.grad4;

      var n0, n1, n2, n3, n4; // Noise contributions from the five corners
      // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
      var s = (x + y + z + w) * F4; // Factor for 4D skewing
      var i = Math.floor(x + s);
      var j = Math.floor(y + s);
      var k = Math.floor(z + s);
      var l = Math.floor(w + s);
      var t = (i + j + k + l) * G4; // Factor for 4D unskewing
      var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
      var Y0 = j - t;
      var Z0 = k - t;
      var W0 = l - t;
      var x0 = x - X0; // The x,y,z,w distances from the cell origin
      var y0 = y - Y0;
      var z0 = z - Z0;
      var w0 = w - W0;
      // For the 4D case, the simplex is a 4D shape I won't even try to describe.
      // To find out which of the 24 possible simplices we're in, we need to
      // determine the magnitude ordering of x0, y0, z0 and w0.
      // Six pair-wise comparisons are performed between each possible pair
      // of the four coordinates, and the results are used to rank the numbers.
      var rankx = 0;
      var ranky = 0;
      var rankz = 0;
      var rankw = 0;
      if (x0 > y0) rankx++;
      else ranky++;
      if (x0 > z0) rankx++;
      else rankz++;
      if (x0 > w0) rankx++;
      else rankw++;
      if (y0 > z0) ranky++;
      else rankz++;
      if (y0 > w0) ranky++;
      else rankw++;
      if (z0 > w0) rankz++;
      else rankw++;
      var i1, j1, k1, l1; // The integer offsets for the second simplex corner
      var i2, j2, k2, l2; // The integer offsets for the third simplex corner
      var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
      // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
      // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
      // impossible. Only the 24 indices which have non-zero entries make any sense.
      // We use a thresholding to set the coordinates in turn from the largest magnitude.
      // Rank 3 denotes the largest coordinate.
      i1 = rankx >= 3 ? 1 : 0;
      j1 = ranky >= 3 ? 1 : 0;
      k1 = rankz >= 3 ? 1 : 0;
      l1 = rankw >= 3 ? 1 : 0;
      // Rank 2 denotes the second largest coordinate.
      i2 = rankx >= 2 ? 1 : 0;
      j2 = ranky >= 2 ? 1 : 0;
      k2 = rankz >= 2 ? 1 : 0;
      l2 = rankw >= 2 ? 1 : 0;
      // Rank 1 denotes the second smallest coordinate.
      i3 = rankx >= 1 ? 1 : 0;
      j3 = ranky >= 1 ? 1 : 0;
      k3 = rankz >= 1 ? 1 : 0;
      l3 = rankw >= 1 ? 1 : 0;
      // The fifth corner has all coordinate offsets = 1, so no need to compute that.
      var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
      var y1 = y0 - j1 + G4;
      var z1 = z0 - k1 + G4;
      var w1 = w0 - l1 + G4;
      var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
      var y2 = y0 - j2 + 2.0 * G4;
      var z2 = z0 - k2 + 2.0 * G4;
      var w2 = w0 - l2 + 2.0 * G4;
      var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
      var y3 = y0 - j3 + 3.0 * G4;
      var z3 = z0 - k3 + 3.0 * G4;
      var w3 = w0 - l3 + 3.0 * G4;
      var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
      var y4 = y0 - 1.0 + 4.0 * G4;
      var z4 = z0 - 1.0 + 4.0 * G4;
      var w4 = w0 - 1.0 + 4.0 * G4;
      // Work out the hashed gradient indices of the five simplex corners
      var ii = i & 255;
      var jj = j & 255;
      var kk = k & 255;
      var ll = l & 255;
      // Calculate the contribution from the five corners
      var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
      if (t0 < 0) n0 = 0.0;
      else {
        var gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4;
        t0 *= t0;
        n0 = t0 * t0 * (grad4[gi0] * x0 + grad4[gi0 + 1] * y0 + grad4[gi0 + 2] * z0 + grad4[gi0 + 3] * w0);
      }
      var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
      if (t1 < 0) n1 = 0.0;
      else {
        var gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) * 4;
        t1 *= t1;
        n1 = t1 * t1 * (grad4[gi1] * x1 + grad4[gi1 + 1] * y1 + grad4[gi1 + 2] * z1 + grad4[gi1 + 3] * w1);
      }
      var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
      if (t2 < 0) n2 = 0.0;
      else {
        var gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) * 4;
        t2 *= t2;
        n2 = t2 * t2 * (grad4[gi2] * x2 + grad4[gi2 + 1] * y2 + grad4[gi2 + 2] * z2 + grad4[gi2 + 3] * w2);
      }
      var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
      if (t3 < 0) n3 = 0.0;
      else {
        var gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) * 4;
        t3 *= t3;
        n3 = t3 * t3 * (grad4[gi3] * x3 + grad4[gi3 + 1] * y3 + grad4[gi3 + 2] * z3 + grad4[gi3 + 3] * w3);
      }
      var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
      if (t4 < 0) n4 = 0.0;
      else {
        var gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4;
        t4 *= t4;
        n4 = t4 * t4 * (grad4[gi4] * x4 + grad4[gi4 + 1] * y4 + grad4[gi4 + 2] * z4 + grad4[gi4 + 3] * w4);
      }
      // Sum up and scale the result to cover the range [-1,1]
      return 27.0 * (n0 + n1 + n2 + n3 + n4);
    }

  };

  // amd
  if (typeof define !== 'undefined' && define.amd) define(function() {
    return SimplexNoise;
  });
  //common js
  if (typeof exports !== 'undefined') exports.SimplexNoise = SimplexNoise;
  // browser
  else if (typeof navigator !== 'undefined') this.SimplexNoise = SimplexNoise;
  // nodejs
  if (typeof module !== 'undefined') {
    module.exports = SimplexNoise;
  }

})();

External CSS

This Pen doesn't use any external CSS resources.

External JavaScript

  1. //cdnjs.cloudflare.com/ajax/libs/jquery/2.1.3/jquery.min.js