Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script async src="https://ga.jspm.io/npm:es-module-shims@1.5.1/dist/es-module-shims.js" crossorigin="anonymous"></script>
<script type="importmap">
  {
    "imports": {
      "three": "https://unpkg.com/three@0.147.0/build/three.module.js",
      "three/addons/": "https://unpkg.com/three@0.147.0/examples/jsm/"
    }
  }
</script>
<script>
  let noise = `//	Simplex 4D Noise 
//	by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}

vec4 grad4(float j, vec4 ip){
  const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
  vec4 p,s;

  p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
  p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
  s = vec4(lessThan(p, vec4(0.0)));
  p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; 

  return p;
}

float snoise(vec4 v){
  const vec2  C = vec2( 0.138196601125010504,  // (5 - sqrt(5))/20  G4
                        0.309016994374947451); // (sqrt(5) - 1)/4   F4
// First corner
  vec4 i  = floor(v + dot(v, C.yyyy) );
  vec4 x0 = v -   i + dot(i, C.xxxx);

// Other corners

// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
  vec4 i0;

  vec3 isX = step( x0.yzw, x0.xxx );
  vec3 isYZ = step( x0.zww, x0.yyz );
//  i0.x = dot( isX, vec3( 1.0 ) );
  i0.x = isX.x + isX.y + isX.z;
  i0.yzw = 1.0 - isX;

//  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
  i0.y += isYZ.x + isYZ.y;
  i0.zw += 1.0 - isYZ.xy;

  i0.z += isYZ.z;
  i0.w += 1.0 - isYZ.z;

  // i0 now contains the unique values 0,1,2,3 in each channel
  vec4 i3 = clamp( i0, 0.0, 1.0 );
  vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
  vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );

  //  x0 = x0 - 0.0 + 0.0 * C 
  vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
  vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
  vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
  vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;

// Permutations
  i = mod(i, 289.0); 
  float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
  vec4 j1 = permute( permute( permute( permute (
             i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
           + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
           + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
           + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.

  vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;

  vec4 p0 = grad4(j0,   ip);
  vec4 p1 = grad4(j1.x, ip);
  vec4 p2 = grad4(j1.y, ip);
  vec4 p3 = grad4(j1.z, ip);
  vec4 p4 = grad4(j1.w, ip);

// Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;
  p4 *= taylorInvSqrt(dot(p4,p4));

// Mix contributions from the five corners
  vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
  vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
  m0 = m0 * m0;
  m1 = m1 * m1;
  return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
               + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;

}`;
  
</script>
              
            
!

CSS

              
                body{
  overflow: hidden;
  margin: 0;
}
              
            
!

JS

              
                import * as THREE from "three";
import { OrbitControls } from "three/addons/controls/OrbitControls";
import { GUI } from 'three/addons/libs/lil-gui.module.min.js';

console.clear();

let scene = new THREE.Scene();
scene.background = new THREE.Color(1, 0, 1).multiplyScalar(0.2);
let camera = new THREE.PerspectiveCamera(60, innerWidth / innerHeight, 1, 1000);
camera.position.set(0, 0, 20);
let renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setSize(innerWidth, innerHeight);
document.body.appendChild(renderer.domElement);
window.addEventListener("resize", event => {
  camera.aspect = innerWidth / innerHeight;
  camera.updateProjectionMatrix();
  renderer.setSize(innerWidth, innerHeight);
})

let controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.enablePan = false;

//scene.add(new THREE.GridHelper());

let gu = {
  time: {value: 0},
  iCount: {value: 100000},
  iGap: {value: 0},
  sCount: {value: 2}
}

let g = new THREE.BufferGeometry();
g.setDrawRange(0, 3);
let ig = new THREE.InstancedBufferGeometry().copy(g);
ig.instanceCount = gu.iCount.value;
let m = new THREE.ShaderMaterial(
  {
    side: THREE.DoubleSide,
	  glslVersion: THREE.GLSL3,
    uniforms: {
      time: gu.time,
      iCount: gu.iCount,
      iGap: gu.iGap,
      sCount: gu.sCount
    },
    vertexShader: `
      uniform float time;
      uniform float iCount;
      uniform float iGap;
      uniform float sCount;
      
      ${noise}
      
      #define PI 3.1415926535
      #define PI2 PI*2.
      
      struct spherical{
        float radius;
        float theta;
        float phi;
      };
      
      float random (vec3 v3) {
          return fract(sin(dot(v3, vec3(12.9898,78.233,34.258))) * 43758.5453123);
      }
      
      spherical setFromVec3(vec3 v3){
        return spherical(length(v3), atan( v3.x, v3.z ), acos( clamp( v3.y / length(v3), -1., 1. ) ));
      }
      
      mat2 rot(float a){
        float c = cos(a); float s = sin(a); return mat2(c, s, -s, c);
      }
      
      // By Morgan McGuire @morgan3d, http://graphicscodex.com
      // Reuse permitted under the BSD license.
      float square(float s) { return s * s; }
      vec3 square(vec3 s) { return s * s; }
      vec3 neonGradient(float t) {
        return clamp(vec3(t * 1.3 + 0.1, square(abs(0.43 - t) * 1.7), (1.0 - t) * 1.7), 0.0, 1.0);
      }

     
      vec3 instPos( float instID ){
        
        float rad = 5.;
        float phi = PI * (3. - sqrt(5.));
        
        float y = 1. - (instID / (iCount - 1.)) * 2.;
        float radius = sqrt(1. - y * y);

        float theta = mod(phi * instID, PI2);

        float x = cos(theta) * radius;
        float z = sin(theta) * radius;
        
        return vec3(x, y, z) * rad;
        
      }
      
      out vec3 vCol;
      
      void main(){
        float t = time * 0.1;
        
        
        vec3 pos = vec3(0., 0.25, 0.);
        float angle = float(gl_VertexID) * PI2 / 3.;
        pos.xy = rot(angle) * pos.xy; // make a triangle
        
        vec3 iPos =  instPos( float( gl_InstanceID ) );
        
        spherical iPosSpherical = setFromVec3(iPos);
        
        float shift = random(iPos) * 2. - 1.;
        float sinVal = abs(sin(PI2 * (shift + t)));
        pos *= (1. - sinVal) * 0.99 + 0.01;
        pos.xy *= rot(PI2 * (shift + t * shift));
        
        pos.yz *= rot(PI * 0.5 - iPosSpherical.phi);
        pos.xz *= rot(iPosSpherical.theta);
        
        //float gapVal = iGap * (floor(mod(float(gl_InstanceID), 2.)) == 0. ? -1. : 1.);
        
        float sAngle = PI2 / sCount * floor(mod(float(gl_InstanceID), sCount));
        vec3 gapShift = vec3(0., 0., 1.);
        gapShift.xz *= rot(sAngle) * iGap;
        
        float n = snoise(vec4(normalize(iPos) + gapShift * 0.1, t));
                
        pos += iPos + normalize(iPos) * (sinVal + (n) * 2.) ;
        pos += gapShift;
        gl_Position = projectionMatrix * modelViewMatrix * vec4( pos, 1.0 );
        
        vCol = neonGradient( 1. - sinVal );
      }
    `,
    fragmentShader: `
      precision mediump float;
      in vec3 vCol;
      out vec4 fCol;
      void main(){
        fCol = vec4(vCol, 1);
      }
    `
  }
);
let o = new THREE.Mesh(ig, m);
o.frustumCulled = false;
scene.add(o);

let gui = new GUI();
gui.add(gu.iCount, "value", 10, 1000000).step(1).name("instance count").onChange(val => {
  ig.instanceCount = val;
})
gui.add(gu.iGap, "value", 0, 20).name("gap");
gui.add(gu.sCount, "value", 2, 10).step(1).name("sphere count");

let clock = new THREE.Clock();

renderer.setAnimationLoop(() => {
  let t = clock.getElapsedTime();
  gu.time.value = t;
  controls.update();
  renderer.render(scene, camera);
});
              
            
!
999px

Console