Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script async src="https://ga.jspm.io/npm:[email protected]/dist/es-module-shims.js" crossorigin="anonymous"></script>
<script type="importmap">
  {
    "imports": {
      "three": "https://unpkg.com/[email protected]/build/three.module.js",
      "three/addons/": "https://unpkg.com/[email protected]/examples/jsm/",
      "three-mesh-bvh": "https://cdn.skypack.dev/[email protected]",
      "simplex-noise": "https://cdn.skypack.dev/[email protected]"
    }
  }
</script>
<script>
  let noise = `//	Simplex 4D Noise 
//	by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}

vec4 grad4(float j, vec4 ip){
  const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
  vec4 p,s;

  p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
  p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
  s = vec4(lessThan(p, vec4(0.0)));
  p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; 

  return p;
}

float snoise(vec4 v){
  const vec2  C = vec2( 0.138196601125010504,  // (5 - sqrt(5))/20  G4
                        0.309016994374947451); // (sqrt(5) - 1)/4   F4
// First corner
  vec4 i  = floor(v + dot(v, C.yyyy) );
  vec4 x0 = v -   i + dot(i, C.xxxx);

// Other corners

// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
  vec4 i0;

  vec3 isX = step( x0.yzw, x0.xxx );
  vec3 isYZ = step( x0.zww, x0.yyz );
//  i0.x = dot( isX, vec3( 1.0 ) );
  i0.x = isX.x + isX.y + isX.z;
  i0.yzw = 1.0 - isX;

//  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
  i0.y += isYZ.x + isYZ.y;
  i0.zw += 1.0 - isYZ.xy;

  i0.z += isYZ.z;
  i0.w += 1.0 - isYZ.z;

  // i0 now contains the unique values 0,1,2,3 in each channel
  vec4 i3 = clamp( i0, 0.0, 1.0 );
  vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
  vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );

  //  x0 = x0 - 0.0 + 0.0 * C 
  vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
  vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
  vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
  vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;

// Permutations
  i = mod(i, 289.0); 
  float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
  vec4 j1 = permute( permute( permute( permute (
             i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
           + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
           + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
           + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.

  vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;

  vec4 p0 = grad4(j0,   ip);
  vec4 p1 = grad4(j1.x, ip);
  vec4 p2 = grad4(j1.y, ip);
  vec4 p3 = grad4(j1.z, ip);
  vec4 p4 = grad4(j1.w, ip);

// Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;
  p4 *= taylorInvSqrt(dot(p4,p4));

// Mix contributions from the five corners
  vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
  vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
  m0 = m0 * m0;
  m1 = m1 * m1;
  return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
               + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;

}`;
  
</script>
              
            
!

CSS

              
                body{
  overflow: hidden;
  margin: 0;
}
              
            
!

JS

              
                import * as THREE from "three";
import { OrbitControls } from "three/addons/controls/OrbitControls";
import { GLTFLoader } from 'three/addons/loaders/GLTFLoader';
import * as BufferGeometryUtils from "three/addons/utils/BufferGeometryUtils";
import { RoomEnvironment } from "three/addons/environments/RoomEnvironment";

import { EffectComposer } from 'three/addons/postprocessing/EffectComposer';
import { RenderPass } from 'three/addons/postprocessing/RenderPass';
import { ShaderPass } from "three/addons/postprocessing/ShaderPass";
import { UnrealBloomPass } from 'three/addons/postprocessing/UnrealBloomPass';

import { computeBoundsTree, disposeBoundsTree, acceleratedRaycast } from 'three-mesh-bvh';
import { createNoise3D } from "simplex-noise";

console.clear();
//console.log(CurveModifier);

class Postprocessing {
  constructor(scene, camera, renderer) {
    const renderScene = new RenderPass(scene, camera);
    const bloomPass = new UnrealBloomPass(
      new THREE.Vector2(window.innerWidth, window.innerHeight),
      2,
      0.25,
      0
    );
    let samples = 4;
    const target1 = new THREE.WebGLRenderTarget(
      window.innerWidth,
      window.innerHeight,
      {
        type: THREE.FloatType,
        format: THREE.RGBAFormat,
        encoding: THREE.sRGBEncoding,
        samples: samples
      }
    );
    this.bloomComposer = new EffectComposer(renderer, target1);
    this.bloomComposer.renderToScreen = false;
    this.bloomComposer.addPass(renderScene);
    this.bloomComposer.addPass(bloomPass);
    const finalPass = new ShaderPass(
      new THREE.ShaderMaterial({
        uniforms: {
          baseTexture: { value: null },
          bloomTexture: { value: this.bloomComposer.renderTarget2.texture }
        },
        vertexShader: `varying vec2 vUv; void main() { vUv = uv; gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); }`,
        fragmentShader: `uniform sampler2D baseTexture; uniform sampler2D bloomTexture; varying vec2 vUv; void main() { gl_FragColor = ( texture2D( baseTexture, vUv ) + vec4( 1.0 ) * texture2D( bloomTexture, vUv ) ); }`,
        defines: {}
      }),
      "baseTexture"
    );
    finalPass.needsSwap = true;
    const target2 = new THREE.WebGLRenderTarget(
      window.innerWidth,
      window.innerHeight,
      {
        type: THREE.FloatType,
        format: THREE.RGBAFormat,
        encoding: THREE.sRGBEncoding,
        samples: samples
      }
    );
    this.finalComposer = new EffectComposer(renderer, target2);
    this.finalComposer.addPass(renderScene);
    this.finalComposer.addPass(finalPass);
    
    this.finalComposer.setPixelRatio( window.devicePixelRatio )
    renderer.setPixelRatio( window.devicePixelRatio )
  }
}

class Pattern extends THREE.LineSegments {
  constructor(gu) {
    let _startPoint = new THREE.Vector3();
    let _endPoint = new THREE.Vector3();

    let allPts = [];

    // <vegetation>

    segmentedElement(_startPoint.set(0.1, 0, 0), _endPoint.set(0.9, 0, 0), 10);
    segmentedElement(_startPoint.set(0.1, 1, 0), _endPoint.set(0.9, 1, 0), 10);
    segmentate(
      new THREE.Path().absarc(0.5, 0.5, 0.5, 0, Math.PI).getSpacedPoints(10)
    );

    let c = new THREE.Vector2(0, 0);
    let c1 = new THREE.Vector2(0.25, 0);
    let c2 = new THREE.Vector2(0.5, 0);
    let v1 = new THREE.Vector2(),
      v2 = new THREE.Vector2();
    let segs = 10;
    for (let i = 0; i <= segs; i++) {
      v1.copy(c1).rotateAround(c, (Math.PI / segs) * i);
      v2.copy(c2).rotateAround(c, (Math.PI / segs) * i);
      segmentate(
        new THREE.Path()
          .moveTo(0.5, 0)
          .quadraticCurveTo(v1.x + 0.5, v1.y + 0.5, v2.x + 0.5, v2.y + 0.5)
          .getSpacedPoints(10)
      );
    }

    let g1 = new THREE.BufferGeometry()
      .setFromPoints(allPts)
      .scale(0.9, 0.75, 1)
      .translate(0.0, -1, 0);
    setGeometryAttributes(g1, { rotDir: -1 });

    // </vegetation>

    // <ankh>
    allPts = [];
    segmentate(
      new THREE.Path()
        .moveTo(0.4, 0)
        .lineTo(0.6, 0)
        .lineTo(0.55, 0.45)
        .lineTo(0.9, 0.4)
        .lineTo(0.9, 0.6)
        .lineTo(0.55, 0.55)
        .absarc(0.5, 0.8, 0.2, 0, Math.PI)
        .lineTo(0.45, 0.55)
        .lineTo(0.1, 0.6)
        .lineTo(0.1, 0.4)
        .lineTo(0.45, 0.45)
        .lineTo(0.4, 0)
        .getPoints(100)
    );
    segmentate(
      new THREE.Path()
        .moveTo(0.5, 0.6)
        .lineTo(0.5, 0.6)
        .absarc(0.5, 0.8, 0.1, 0, Math.PI)
        .lineTo(0.5, 0.6)
        .getPoints(50)
    );
    let g2 = new THREE.BufferGeometry()
      .setFromPoints(allPts)
      //.translate(0, -1, 0);
    setGeometryAttributes(g2, { rotDir: 1 });
    // </ankh>

    let g = BufferGeometryUtils.mergeBufferGeometries([g1, g2]);

    let ig = new THREE.InstancedBufferGeometry().copy(g);
    ig.instanceCount = 32;
    let m = new THREE.LineBasicMaterial({
      color: 0x442208,
      onBeforeCompile: (shader) => {
        shader.uniforms.time = gu.time;
        shader.uniforms.globalBloom = gu.globalBloom;
        shader.vertexShader = `
          uniform float time;
          attribute float rotDir;
          mat2 rot(float a){
            float c = cos(a);
            float s = sin(a);
            return mat2(c, -s, s, c);
          }
          ${shader.vertexShader}
        `.replace(
          `#include <begin_vertex>`,
          `#include <begin_vertex>
          
            float t = time * 0.01;
            float amount = ${ig.instanceCount}.;
            float radiusBase = 4.;
            
            float angleStep = PI2 / amount;
            float angle = (angleStep * float(gl_InstanceID)) + angleStep * position.x;
            angle = mod(angle + t * PI2 * rotDir, PI2);
            transformed.xy = rot(angle) * vec2(0., radiusBase + position.y);
          
          `
        );
        //console.log(shader.vertexShader);
        shader.fragmentShader = `
          uniform float globalBloom;
          ${shader.fragmentShader}
        `.replace(
          `#include <dithering_fragment>`,
          `#include <dithering_fragment>
            
            gl_FragColor.rgb = mix(gl_FragColor.rgb, vec3(0), globalBloom);
          `
        );
        //console.log(shader.fragmentShader)
      }
    });
    super(ig, m);

    function segmentate(pts) {
      for (let i = 0; i < pts.length - 1; i++) {
        allPts.push(pts[i].clone(), pts[i + 1].clone());
      }
    }

    function segmentedElement(start, end, division = 10) {
      for (let i = 0; i < division; i++) {
        allPts.push(
          new THREE.Vector3().lerpVectors(
            start,
            end,
            THREE.MathUtils.clamp(i / division, 0, 1)
          )
        );
        allPts.push(
          new THREE.Vector3().lerpVectors(
            start,
            end,
            THREE.MathUtils.clamp((i + 1) / division, 0, 1)
          )
        );
      }
    }

    function setGeometryAttributes(geometry, params) {
      let rotDir = new Array(geometry.attributes.position.count).fill(
        params.rotDir
      );
      geometry.setAttribute(
        "rotDir",
        new THREE.Float32BufferAttribute(rotDir, 1)
      );
    }
  }
}


// <CurveModifier>
const CHANNELS = 4;
const TEXTURE_WIDTH = 1024;
const TEXTURE_HEIGHT = 4;

function initSplineTexture( numberOfCurves = 1 ) {

	const dataArray = new Float32Array( TEXTURE_WIDTH * TEXTURE_HEIGHT * numberOfCurves * CHANNELS );
	const dataTexture = new THREE.DataTexture(
		dataArray,
		TEXTURE_WIDTH,
		TEXTURE_HEIGHT * numberOfCurves,
		THREE.RGBAFormat,
		THREE.FloatType
	);
	//dataTexture.magFilter = THREE.NearestFilter;
	dataTexture.needsUpdate = true;

	return dataTexture;

}

function updateSplineTexture( texture, splineCurve, offset = 0, closed ) {
	const numberOfPoints = TEXTURE_WIDTH;
	splineCurve.arcLengthDivisions = numberOfPoints / 2;
	splineCurve.updateArcLengths();
	const points = splineCurve.getSpacedPoints( numberOfPoints );
	const frenetFrames = splineCurve.computeFrenetFrames( numberOfPoints, closed );

	for ( let i = 0; i < numberOfPoints; i ++ ) {

		const rowOffset = Math.floor( i / TEXTURE_WIDTH );
		const rowIndex = i % TEXTURE_WIDTH;

		let pt = points[ i ];
		setTextureValue( texture, rowIndex, pt.x, pt.y, pt.z, 0 + rowOffset + ( 4 * offset ) );
		pt = frenetFrames.tangents[ i ];
		setTextureValue( texture, rowIndex, pt.x, pt.y, pt.z, 1 + rowOffset + ( 4 * offset ) );
		pt = frenetFrames.normals[ i ];
		setTextureValue( texture, rowIndex, pt.x, pt.y, pt.z, 2 + rowOffset + ( 4 * offset ) );
		pt = frenetFrames.binormals[ i ];
		setTextureValue( texture, rowIndex, pt.x, pt.y, pt.z, 3 + rowOffset + ( 4 * offset ) );

	}

	texture.needsUpdate = true;

}

function setTextureValue( texture, index, x, y, z, o ) {

	const image = texture.image;
	const { data } = image;
	const i = 4 * texture.source.data.width * o; // Row Offset
	data[ index * 4 + i + 0 ] = x;
	data[ index * 4 + i + 1 ] = y;
	data[ index * 4 + i + 2 ] = z;
	data[ index * 4 + i + 3 ] = 1;

}
// </CurveModifier>


THREE.BufferGeometry.prototype.computeBoundsTree = computeBoundsTree;
THREE.BufferGeometry.prototype.disposeBoundsTree = disposeBoundsTree;
THREE.Mesh.prototype.raycast = acceleratedRaycast;

let noise3D = createNoise3D();
let gu = {
  time: {value: 0},
  globalBloom: {value: 0}
}

class Curves{
  constructor(model, modelSize, curveAmount, basePointsAmount){
    let raycaster = new THREE.Raycaster();
    raycaster.firstHitOnly = true;
    let ori = new THREE.Vector3(); // origin
    let dir = new THREE.Vector3(); // direction
    let v3 = new THREE.Vector3();
    let found;
    
    let angleStep = Math.PI * 2 / curveAmount;
    let heightStep = modelSize.y / basePointsAmount;
    
    model.geometry.computeBoundsTree();
    
    this.curves = [];
    
    for(let i = 0; i < curveAmount; i++){
      let pts = [];
      v3.setFromCylindricalCoords(1, angleStep * i, 0);
      for(let idx = (5 + THREE.MathUtils.randInt(0, 40)); idx < (basePointsAmount - THREE.MathUtils.randInt(0, 40)); idx++){
        let angleNoise = noise3D(v3.x, (heightStep * idx) / modelSize.y * 5, v3.z) * Math.PI * 0.1;
        let a = angleNoise + angleStep * i;
        let h = heightStep * idx;
        let r = 100;
        ori.setFromCylindricalCoords(r, a, h);
        dir.copy(ori).setY(0).normalize().negate();
        raycaster.set(ori, dir);
        found = raycaster.intersectObject(model);
        if (found.length > 0) pts.push(found[0].point.addScaledVector(found[0].face.normal, 0));
      }
      this.curves.push(new THREE.CatmullRomCurve3(pts));
    }
  }
}

let bgColors = {
  on: new THREE.Color(1, 0.25, 0).multiplyScalar(0.25).getHex(),
  off: 0x000000
}
let scene = new THREE.Scene();
scene.background = new THREE.Color(bgColors.off);

let camera = new THREE.PerspectiveCamera(30, innerWidth / innerHeight, 1, 1000);
camera.position.set(-5, 0, 13).setLength(50);
scene.add(camera);

let renderer = new THREE.WebGLRenderer({ antialias: false });
renderer.toneMapping = THREE.ReinhardToneMapping;
renderer.toneMappingExposure = Math.pow( 1.2, 4.0 );
renderer.setSize(innerWidth, innerHeight);

document.body.appendChild(renderer.domElement);
window.addEventListener("resize", (event) => {
  camera.aspect = innerWidth / innerHeight;
  camera.updateProjectionMatrix();
  renderer.setSize(innerWidth, innerHeight);
  postprocessing.bloomComposer.setSize(innerWidth, innerHeight);
  postprocessing.finalComposer.setSize(innerWidth, innerHeight);
});

const pmremGenerator = new THREE.PMREMGenerator(renderer);
const bgt = pmremGenerator.fromScene(new RoomEnvironment(), 0.04).texture;
scene.environment = bgt;
//scene.background = bgt;

let controls = new OrbitControls(camera, renderer.domElement);
controls.enableDamping = true;
controls.enablePan = false;
controls.maxDistance = 200;

let light = new THREE.DirectionalLight(0xffffff, 0.5);
light.position.set(0, 1, 2);
scene.add(light, new THREE.AmbientLight(0xffffff, 0.5));

let loader = new GLTFLoader();
let gltf = await loader.loadAsync("https://threejs.org/examples/models/gltf/Nefertiti/Nefertiti.glb");
let model = gltf.scene;
model.traverse(child => {
  if(child.isMesh){
    child.material.map = null;
    child.material.normalMap = null;
    child.material.side = THREE.DoubleSide;
  }
})
let box = new THREE.Box3().setFromObject(model);
let size = new THREE.Vector3();
box.getSize(size);
camera.position.y = size.y * 0.2;
controls.target.set(0, size.y * 0.465, 0);
controls.update();
//scene.add(model);

let curveAmount = 500;
let basePointsAmount = 300;
let curves = new Curves(model.children[0], size, curveAmount, basePointsAmount);
let dataTexture = initSplineTexture(curveAmount);
console.log(dataTexture);
let instIdx = []; //index
let instDur = []; //duration
let instDel = []; //delay
curves.curves.forEach((curve, cIdx) => {
  updateSplineTexture(dataTexture, curve, cIdx, false);
  instIdx.push(cIdx);
  instDur.push(Math.random() * 2 + 8);
  instDel.push(Math.random() + 1);
})

const radialSegs = 5;
/*let g = BufferGeometryUtils.mergeBufferGeometries([
  new THREE.CylinderGeometry(1, 1, 1, radialSegs, pointsAmount, true).translate(
    0,
    0.5,
    0
  ),
  new THREE.SphereGeometry(
    1,
    radialSegs,
    radialSegs,
    0,
    Math.PI * 2,
    0,
    Math.PI * 0.5
  ).translate(0, 1, 0),
  new THREE.SphereGeometry(
    1,
    radialSegs,
    radialSegs,
    0,
    Math.PI * 2,
    Math.PI * 0.5,
    Math.PI * 0.5
  )
]);
*/
let g = new THREE.CylinderGeometry(1, 1, 1, radialSegs, basePointsAmount)
  .translate(0, 0.5, 0)
  .rotateZ(-Math.PI * 0.5)
  .setAttribute("instIdx", new THREE.InstancedBufferAttribute(new Float32Array(instIdx), 1))
  .setAttribute("instDur", new THREE.InstancedBufferAttribute(new Float32Array(instDur), 1))
  .setAttribute("instDel", new THREE.InstancedBufferAttribute(new Float32Array(instDel), 1));

let gi = new THREE.InstancedBufferGeometry().copy(g);
gi.instanceCount = curveAmount;
let m = new THREE.MeshStandardMaterial({
  color: 0xdf6222, //0xff3030,
  roughness: 0.125,
  metalness: 1,
  onBeforeCompile: shader => {
    shader.uniforms.time = gu.time;
    shader.uniforms.globalBloom = gu.globalBloom;
    shader.uniforms.dataTexture = {value: dataTexture};
    shader.uniforms.radius = m.userData.uniforms.radius;
    shader.uniforms.eyeAppearance = m.userData.uniforms.eyeAppearance;
    shader.vertexShader = `
      uniform float time;
      uniform sampler2D dataTexture;
      uniform float radius;
      
      attribute float instIdx;
      attribute float instDur;
      attribute float instDel;
      
      varying vec3 vPos;
      
      float textureLayers = 4. * ${curveAmount}.;
		  float textureStacks = 1.;
      ${shader.vertexShader}
    `.replace(
      `#include <defaultnormal_vertex>`, ``
    ).replace(
      `#include <normal_vertex>`, ``
    )
     .replace( 
      `#include <begin_vertex>`, 
      `#include <begin_vertex>
      
      float elongation = clamp((time - instDel) / instDur, 0., 1.);
      float canElongate = elongation > 0. ? 1. : 0.;
      
      float mt = position.x * elongation;
      float rowOffset = instIdx * 4.;
      vec3 spinePos = texture2D(dataTexture, vec2(mt, (0. + rowOffset + 0.5) / textureLayers)).xyz;
      vec3 a =        texture2D(dataTexture, vec2(mt, (1. + rowOffset + 0.5) / textureLayers)).xyz;
      vec3 b =        texture2D(dataTexture, vec2(mt, (2. + rowOffset + 0.5) / textureLayers)).xyz;
      vec3 c =        texture2D(dataTexture, vec2(mt, (3. + rowOffset + 0.5) / textureLayers)).xyz;
      mat3 basis = mat3(a, b, c);
      transformed = basis
        * (position * radius * canElongate)
        + spinePos;
      vec3 transformedNormal = normalMatrix * (basis * objectNormal);
      
      vPos = transformed;
      
      #include <normal_vertex>
      ` 
    );
    //console.log(shader.vertexShader);
    shader.fragmentShader = `
      #define S(a, b, c) smoothstep(a, b, c)
      uniform float time;
      uniform float globalBloom;
      uniform float eyeAppearance;
      varying vec3 vPos;
      ${shader.fragmentShader}
    `.replace(
      `#include <dithering_fragment>`,
      `
        #include <dithering_fragment>
        
        
        float appearance = 0.;
        appearance = max(appearance, S(eyeAppearance, eyeAppearance + 1., time));
        vec2 symmetry = vec2(abs(vPos.x - 0.1425), vPos.y);
        vec2 eyePos = vec2(1.39, 18.45);
        float eye = distance(symmetry, eyePos);
        float f = S(0.6, 0.05, eye) * clamp(sign(vPos.z), 0., 1.) * appearance;
        
        
        vec3 colShine = vec3(0.125, 0.5, 1); // eyes
        vec3 ringCol1 = vec3(1, 0.25, 0.25); // ring color 1
        vec3 ringCol2 = vec3(0.25, 0.5, 1); // ring color 2
        
        // planes
        vec3 planeDir = normalize(vec3(0, 1, -0.65));
        float timeStep = 0.5;
        
        float d =S(0.25, 0., abs(19.5 - dot(vPos, planeDir)));
        colShine = mix(colShine, ringCol1, d);
        float ring1app = S(eyeAppearance + 2.5 * timeStep, eyeAppearance + 4.5 * timeStep, time);
        f = max(f, d * ring1app);
        appearance = max(appearance, ring1app);
        
        d =S(0.25, 0., abs(18. - dot(vPos, planeDir)));
        colShine = mix(colShine, ringCol2, d);
        float ring2app = S(eyeAppearance + 2.25 * timeStep, eyeAppearance + 4.25 * timeStep, time);
        f = max(f, d * ring2app);
        appearance = max(appearance, ring2app);
        
        d =S(0.25, 0., abs(16. - dot(vPos, planeDir)));
        colShine = mix(colShine, ringCol1, d);
        float ring3app = S(eyeAppearance + 2.0 * timeStep, eyeAppearance + 4.0 * timeStep, time);
        f = max(f, d * ring3app);
        appearance = max(appearance, ring3app);
        
        vec3 cntr = vec3(0., 8., 1.);
        d = S(0.2, 0., abs(5. - distance(vPos, cntr))) * (vPos.y < 8. ? 1. : 0.);
        colShine = mix(colShine, ringCol2, d);
        float sphereApp = S(eyeAppearance + 4.0 * timeStep, eyeAppearance + 6.0 * timeStep, time);
        f = max(f, d * sphereApp);
        appearance = max(appearance, sphereApp);
        
        f *= f * f * f * appearance;
        
        vec3 colBloomNone = mix(gl_FragColor.rgb, colShine, f);
        vec3 colBloom = mix(vec3(0), vec3(0.375), f * f * f);
        
        gl_FragColor.rgb = mix(colBloomNone, colBloom, globalBloom);
      `
    );
    //console.log(shader.fragmentShader)
  }
});
m.userData.uniforms = {
  radius: {value: 0.075},
  eyeAppearance: {value: 13}
}
let o = new THREE.Mesh(gi, m);
o.frustumCulled = false;
scene.add(o);

let pattern = new Pattern(gu);
pattern.position.z = -900;
pattern.scale.setScalar(48);
camera.add(pattern);

let postprocessing = new Postprocessing(scene, camera, renderer);

let clock = new THREE.Clock();

renderer.setAnimationLoop(() => {
  let t = clock.getElapsedTime();
  gu.time.value = t;
  controls.update();
  //renderer.render(scene, camera);
  gu.globalBloom.value = 1;
  scene.background.set(bgColors.off);
  postprocessing.bloomComposer.render();
  gu.globalBloom.value = 0;
  scene.background.set(bgColors.on);
  postprocessing.finalComposer.render();
});

              
            
!
999px

Console