Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <script>
  let simpleNoise = `
    float N (vec2 st) { // https://thebookofshaders.com/10/
        return fract( sin( dot( st.xy, vec2(12.9898,78.233 ) ) ) *  43758.5453123);
    }
    
    float smoothNoise( vec2 ip ){ // https://www.youtube.com/watch?v=zXsWftRdsvU
    	vec2 lv = fract( ip );
      vec2 id = floor( ip );
      
      lv = lv * lv * ( 3. - 2. * lv );
      
      float bl = N( id );
      float br = N( id + vec2( 1, 0 ));
      float b = mix( bl, br, lv.x );
      
      float tl = N( id + vec2( 0, 1 ));
      float tr = N( id + vec2( 1, 1 ));
      float t = mix( tl, tr, lv.x );
      
      return mix( b, t, lv.y );
    }
  `;
  
  let caustic = `
        vec2 cPos = vPos.xz - (1, 0.25) * vPos.y;
        vec2 cUv = (cPos - vec2(time * 1.5, 0.));

        float caustic = abs(smoothNoise(cUv) - 0.5);
        caustic = pow(smoothstep(0.5, 0., caustic), 2.);
        float causticFade = smoothNoise(cPos - vec2(time, 0.));
        caustic *= causticFade;

        float causticShade = clamp(dot(normalize(vec3(1, 1, 0.25)), vN), 0., 1.);
        caustic *= causticShade;

        gl_FragColor.rgb += vec3(caustic) * 0.25;
  `;
</script>
              
            
!

CSS

              
                body{
  overflow: hidden;
  margin: 0;
}
              
            
!

JS

              
                console.clear();
import * as THREE from "https://cdn.skypack.dev/[email protected]";
import {BufferGeometryUtils} from "https://cdn.skypack.dev/[email protected]/examples/jsm/utils/BufferGeometryUtils.js";
import {OrbitControls} from "https://cdn.skypack.dev/[email protected]/examples/jsm/controls/OrbitControls.js";

let scene = new THREE.Scene();
let camera = new THREE.PerspectiveCamera(45, innerWidth / innerHeight, 0.1, 1000);
camera.position.set(-5, 0, 10);
let renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setSize(innerWidth, innerHeight);
renderer.setClearColor(0x66775f);
document.body.appendChild(renderer.domElement);

let controls = new OrbitControls(camera, renderer.domElement);
controls.enablePan = false;
controls.enableDamping = true;
controls.maxPolarAngle = THREE.MathUtils.degToRad(120);
controls.minDistance = 10;
controls.maxDistance = 20;
controls.target.set(6, 0, 0);
controls.update();

let light = new THREE.DirectionalLight(0xffffff, 1);
light.position.set(1.0, 1.0, 0.25);
scene.add(light, new THREE.AmbientLight(0xffffff, 1));

// fish
let fishGeom = createFishGeometry();
let fishMat = createFishMaterial();
let fishSize = new THREE.Box3().setFromBufferAttribute(fishGeom.attributes.position);
fishMat.userData.uniforms.totalLength.value = fishSize.max.x;
//console.log(fishSize.max.x);
let fish = new THREE.Mesh(fishGeom, fishMat)
scene.add(fish);

// weed
let weedGeom = createWeedGeometry();
let weedMat = createWeedMaterial();
let weed = new THREE.Mesh(weedGeom, weedMat);
scene.add(weed);

// back
let backGeom = createBackGeometry();
let backMat = createBackMaterial();
let backMesh = new THREE.Mesh(backGeom, backMat);
scene.add(backMesh);

window.onresize = function () {
  camera.aspect = innerWidth / innerHeight;
  camera.updateProjectionMatrix();

  renderer.setSize( innerWidth, innerHeight );
};

// RENDER /////////////////////////////////////////////////////////////////////////////////////////////////////////
let clock = new THREE.Clock();

renderer.setAnimationLoop(() => {
  let t = clock.getElapsedTime();
  fishMat.userData.uniforms.time.value = t * 1.5;
  weedMat.userData.uniforms.time.value = t;
  fish.position.y = Math.sin(t * 0.314) * 0.25;
  fish.position.z = Math.cos(t * 0.27) * 0.75;
  controls.update();
  renderer.render(scene, camera);
});
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////

function createBackMaterial(){
  let m = new THREE.MeshBasicMaterial({
    color: 0x66775f,
    side: THREE.BackSide,
    onBeforeCompile: shader => {
      shader.fragmentShader = `
        ${shader.fragmentShader}
      `.replace(
        `vec4 diffuseColor = vec4( diffuse, opacity );`,
        `
        vec3 col = mix(diffuse, diffuse + vec3(0.75), smoothstep(0.5, 0.7, vUv.y));
        vec4 diffuseColor = vec4( col, opacity );
        `
      );
      ;
      //console.log(shader.fragmentShader);
    }
  });
  m.defines = {"USE_UV" : ""};
  return m;
}

function createBackGeometry(){
  let g = new THREE.SphereGeometry(500, 32, 16);
  g.translate(6, 0, 0);
  return g;
}

function createWeedMaterial(){
  let m = new THREE.MeshLambertMaterial({
    wireframe: false,
    onBeforeCompile: shader => {
      shader.uniforms.time = m.userData.uniforms.time;
      shader.vertexShader = `
        uniform float time;
        varying vec4 vPos;
        ${simpleNoise}
        ${shader.vertexShader}
      `.replace(
        `#include <begin_vertex>`,
        `#include <begin_vertex>
          vec2 waveUv = uv * vec2(5., 8.);
          float wave = smoothNoise(waveUv - vec2(time, 0.));
          transformed.y += wave * 2.;
          vPos = modelMatrix * vec4(transformed, 1.0);
        `
      );
      //console.log(shader.vertexShader);
      shader.fragmentShader = `
        uniform float time;
        varying vec4 vPos;
        ${simpleNoise}
        ${shader.fragmentShader}
      `.replace(
        `vec4 diffuseColor = vec4( diffuse, opacity );`,
        `
        vec3 col = vec3(0);
        
        vec2 weedUv = (vUv - vec2(time / 20., 0.)) * vec2(20., 1000.);
        float weed = smoothNoise(weedUv);
        col = mix(vec3(0.4, 0.5, 0.2), vec3(0.1, 0.15, 0.05), weed) * 0.75;
        
        
        float circleDist = length(vUv - 0.5);
        
        //if (circleDist > 0.5) discard;
        
        vec4 diffuseColor = vec4( col, opacity );`
      ).replace(
        `#include <dithering_fragment>`,
        `#include <dithering_fragment>
        
          // fake caustic
        vec2 cPos = vPos.xz * 0.25;
        vec2 cUv = (cPos * vec2(0.5, 1.) - vec2(time * 0.5, 0.));
        
        float caustic = abs(smoothNoise(cUv) - 0.5);
        caustic = pow(smoothstep(0.5, 0., caustic), 2.);
        float causticFade = smoothNoise(cPos - vec2(time, 0.));
        caustic *= causticFade;
        
        gl_FragColor.rgb += vec3(caustic) * 0.25;
        
        
          gl_FragColor.rgb = mix(vec3(102, 119, 95) / 255., gl_FragColor.rgb, smoothstep(0.5, 0., circleDist));
        `
      );
      //console.log(shader.fragmentShader);
    }
  });
  m.defines = {"USE_UV" : ""};
  m.userData = {
    uniforms: {
      time: {
        value: 0
      }
    }
  }
  return m;
}

function createWeedGeometry(){
  let g = new THREE.PlaneGeometry(50, 50, 200, 200);
  g.rotateX(Math.PI * -0.5);
  g.translate(6, -10, 0);
  return g;
}

function createFishMaterial(){
  
  let mapTex = new THREE.TextureLoader().load('https://threejs.org/examples/textures/uv_grid_opengl.jpg');

  let m = new THREE.MeshPhongMaterial({
    color: 0x446655,
    wireframe: false,
    //map: mapTex,
    onBeforeCompile: shader => {
      shader.uniforms.time = m.userData.uniforms.time;
      shader.uniforms.totalLength = m.userData.uniforms.totalLength;
      shader.vertexShader = `
        uniform float time;
        uniform float totalLength;
        attribute float parts;
        varying float vParts;
        varying vec4 vPos;
        varying vec3 vN;
        
        float getWave(float x){
          float currX = mod(x - (time * 4.), 3.1415926535 * 2.);
          return sin(currX) * 0.375 * pow((x / totalLength), 2.);
        }
        float getAngle(float x){
          float d = 0.001;
          float dz = getWave(x + d) - getWave(x);
          return atan( dz, d );
        }
        // https://gist.github.com/yiwenl/3f804e80d0930e34a0b33359259b556c //
        mat4 rotationMatrix(vec3 axis, float angle) {
            axis = normalize(axis);
            float s = sin(angle);
            float c = cos(angle);
            float oc = 1.0 - c;

            return mat4(oc * axis.x * axis.x + c,           oc * axis.x * axis.y - axis.z * s,  oc * axis.z * axis.x + axis.y * s,  0.0,
                        oc * axis.x * axis.y + axis.z * s,  oc * axis.y * axis.y + c,           oc * axis.y * axis.z - axis.x * s,  0.0,
                        oc * axis.z * axis.x - axis.y * s,  oc * axis.y * axis.z + axis.x * s,  oc * axis.z * axis.z + c,           0.0,
                        0.0,                                0.0,                                0.0,                                1.0);
        }

        vec3 rotate(vec3 v, vec3 axis, float angle) {
          mat4 m = rotationMatrix(axis, angle);
          return (m * vec4(v, 1.0)).xyz;
        }
        /////////////////////////////////////////////////////////////////////
        ${shader.vertexShader}
      `.replace(
        `#include <beginnormal_vertex>`,
        `#include <beginnormal_vertex>
          float ang = getAngle(position.x);
          objectNormal = normalize(rotate(vec3(normal), vec3(0, 1, 0), ang));
          vN = objectNormal;
        `
      )
       .replace(
        `#include <begin_vertex>`,
        `#include <begin_vertex>
          vParts = parts;
          transformed.z += getWave(position.x);
          vPos = modelMatrix * vec4(transformed, 1.0);
        `
      );
      //console.log(shader.vertexShader);
      shader.fragmentShader = `
        uniform float time;
        varying float vParts;
        varying vec4 vPos;
        varying vec3 vN;
        ${simpleNoise}
        ${shader.fragmentShader}
      `.replace(
        `vec4 diffuseColor = vec4( diffuse, opacity );`,
        `
          vec3 col = diffuse;
          float parts = floor(vParts + 0.01);
          if (parts == 0.){
            col = diffuse;
            float wave = sin(vUv.y * PI2 * 6.) * 0.5 + 0.5;
            col *= wave * 0.15 + 0.2;
            col = mix(diffuse, col, smoothstep(0.9, 0.5, abs(vUv.x - 0.5) * 2.));
            col = mix(col, diffuse * 0.25, smoothstep(0.2, 0.0, vUv.y));
            
            
            float head = abs(sin(vUv.x * PI2));
            head = head * 0.05 + 0.175;
            col = mix(diffuse * 0.25, col, smoothstep(1. - head, 1. - (head + 0.025), vUv.y));
            
            vec2 eyeUv = vUv;
            eyeUv.x = abs(vUv.x - 0.5) * 0.35;
            float eyeDist = distance(vec2(0.07, 0.875), eyeUv);
            float eye = smoothstep(0.02, 0.0175, eyeDist);
            col = mix(col, vec3(1, 1, 0) * 0.2, eye);
            eye = smoothstep(0.015, 0.0125, eyeDist);
            col = mix(col, vec3(0.05), eye);
            
            vec2 mouthUv = vUv;
            mouthUv.x = abs(vUv.x - 0.5) * 2.;
            mouthUv.x -= mouthUv.y * 0.25;
            float mouth = 1. - (cos(mouthUv.x * PI2) * 0.5 + 0.5);
            mouth = pow(mouth, 64.) * 0.05 + 0.001;
            mouth = 1. - mouth;
            col = mix(diffuse * 0.4, col, smoothstep(mouth, mouth - 0.001, mouthUv.y));
          }
          if (parts == 1.){
            col = (vec3(0.375, 0.1, 0.05) * 3.) * diffuse;
            float wave = sin(vUv.x * PI2 * 70.) * 0.5 + 0.5;
            wave *= sin(vUv.y * PI2 * 5.) * 0.5 + 0.5;
            col *= wave * 0.25 + 0.75;
            vec2 tailUv = vUv;
            tailUv.y -= 0.5;
            tailUv.y = abs(tailUv.y) * 2.;
            col = mix(diffuse * 0.25, col, smoothstep(1., 0.5, tailUv.y));
          }
          
          vec4 diffuseColor = vec4( col, opacity );
        `
      ).replace(
        `#include <dithering_fragment>`,
        `#include <dithering_fragment>
        
        // fake caustic
        vec2 cPos = vPos.xz - (1, 0.25) * vPos.y;
        vec2 cUv = (cPos - vec2(time * 1.5, 0.));
        
        float caustic = abs(smoothNoise(cUv) - 0.5);
        caustic = pow(smoothstep(0.5, 0., caustic), 2.);
        float causticFade = smoothNoise(cPos - vec2(time, 0.));
        caustic *= causticFade;
        
        float causticShade = clamp(dot(normalize(vec3(1, 1, 0.25)), vN), 0., 1.);
        caustic *= causticShade;
        
        gl_FragColor.rgb += vec3(caustic) * 0.25;
        
        `
      );
      //console.log(shader.fragmentShader);
    }
  });
  m.defines = {"USE_UV" : " "};
  m.userData = {
    uniforms: {
      time: {value: 0},
      totalLength: {value: 0}
    }
  }
  return m;
}

function createFishGeometry(){
  
  const divisions = 200;
  // shaping curves
  // top
  let topCurve = new THREE.CatmullRomCurve3(
    [
      [0, 0],
      [0.1, 0.15],
      [1, 0.75],
      [3.5, 1.5],
      [9, 0.5],
      [9.5, 0.45],
      [10, 0.55]
    ].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
  );
  let topPoints = topCurve.getSpacedPoints(100);
  // bottom
  let bottomCurve = new THREE.CatmullRomCurve3(
    [
      [0, 0],
      [0.1, -0.15],
      [0.5, -0.35],
      [4.5, -1],
      [8, -0.6],
      [9.5, -0.45],
      [10, -0.55]
    ].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
  );
  let bottomPoints = bottomCurve.getSpacedPoints(100);
  // side
  let sideCurve = new THREE.CatmullRomCurve3(
    [
      [0,   0, 0],
      [0.1, 0, 0.125],
      [1,   0, 0.375],
      [4,-0.25, 0.6],
      [8,   0, 0.25],
      [10,  0, 0.05]
    ].map(p => {return new THREE.Vector3(p[0], p[1], p[2])})
  );
  let sidePoints = sideCurve.getSpacedPoints(100);
  
  // frames
  let frames = computeFrames();
  //console.log(frames);
  // frames to geometry
  let pts = [];
  let parts = [];
  frames.forEach(f => {
    f.forEach(p => {
      pts.push(p.x, p.y, p.z);
      parts.push(0);
    })
  })
  
  
  // FINS
  // tail fin
  let tailCurve = new THREE.CatmullRomCurve3(
    [
      [11,   -1.],
      [12.5, -1.5],
      [12., 0],
      [12.5, 1.5],
      [11,   1.],
    ].map(p => {return new THREE.Vector3(p[0], p[1], p[2])})
  );
  let tailPoints = tailCurve.getPoints(divisions / 2);
  let tailPointsRev = tailPoints.map(p => {return p}).reverse();
  tailPointsRev.shift();
  let fullTailPoints = tailPoints.concat(tailPointsRev);

  let tailfinSlices = 5;
  let tailRatioStep = 1 / tailfinSlices;
  let vTemp = new THREE.Vector3();
  let tailPts = [];
  let tailParts = [];
  for(let i = 0; i <= tailfinSlices; i++){
    let ratio = i * tailRatioStep;
    frames[frames.length - 1].forEach( (p, idx) => {
      vTemp.lerpVectors(p, fullTailPoints[idx], ratio);
      tailPts.push(vTemp.x, vTemp.y, vTemp.z);
      tailParts.push(1);
    })
  }
  let gTail = new THREE.PlaneGeometry(1, 1, divisions, tailfinSlices);
  gTail.setAttribute("position", new THREE.Float32BufferAttribute(tailPts, 3));
  gTail.setAttribute("parts", new THREE.Float32BufferAttribute(tailParts, 1));
  gTail.computeVertexNormals();

  // dorsal
  let dorsalCurve = new THREE.CatmullRomCurve3(
    [
      [3, 1.45],
      [3.25, 2.25],
      [3.75, 3],
      [6, 2],
      [7, 1]
    ].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
  );
  let dorsalPoints = dorsalCurve.getSpacedPoints(100);
  let gDorsal = createFin(topPoints, dorsalPoints, true);

  // rect
  let rectCurve = new THREE.CatmullRomCurve3(
    [
      [6, -0.9],
      [7.25, -1.5],
      [7.5, -0.75]
    ].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
  );
  let rectPoints = rectCurve.getSpacedPoints(40);
  let gRect = createFin(bottomPoints, rectPoints, false);

  // pelvic
  let pelvicCurve = new THREE.CatmullRomCurve3(
    [
      [2.25, -0.7],
      [3.75, -2],
      [4, -1]
    ].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
  );
  let pelvicPoints = pelvicCurve.getSpacedPoints(40);

  let gPelvic = createFin(bottomPoints, pelvicPoints, false);
  gPelvic.translate(0, 0.6, 0);
  let gPelvicL = gPelvic.clone();
  gPelvicL.rotateX(THREE.MathUtils.degToRad(-20));
  gPelvicL.translate(0, -0.6, 0);
  let gPelvicR = gPelvic.clone();
  gPelvicR.rotateX(THREE.MathUtils.degToRad(20));
  gPelvicR.translate(0, -0.6, 0);

  let bodyGeom = new THREE.PlaneGeometry(1, 1, divisions, frames.length - 1);
  bodyGeom.setAttribute("position", new THREE.Float32BufferAttribute(pts, 3));
  bodyGeom.setAttribute("parts", new THREE.Float32BufferAttribute(parts, 1));
  bodyGeom.computeVertexNormals();

  let mainGeom = BufferGeometryUtils.mergeBufferGeometries([bodyGeom, gTail, gDorsal, gRect, gPelvicL, gPelvicR]);
  //console.log(mainGeom.attributes.position.count)
  return mainGeom;

  function createFin(basePoints, contourPoints, isTop){
    let basePts = [];
    let shift = 0.05;
    let shiftSign = isTop ? 1 : -1;
    let vAdd = new THREE.Vector3(0, -shift * shiftSign, 0);

    contourPoints.forEach((p, idx) => {
      basePts.push(getPoint(basePoints, p.x).add(vAdd));
    });

    let basePtsRev = basePts.map(p => {return p.clone()}).reverse();
    basePtsRev.shift();

    let contourPointsRev = contourPoints.map(p => {return p.clone()}).reverse();
    contourPointsRev.shift();

    basePts.forEach((p, idx, arr) => {
      if (idx > 0 && idx < arr.length - 1) p.setZ(shift * shiftSign)
    });
    basePtsRev.forEach((p, idx, arr) => {
      if (idx < arr.length - 1) p.setZ(-shift * shiftSign)
    });

    console.log(contourPoints.length, contourPointsRev.length, basePts.length, basePtsRev.length);

    let fullPoints = [];
    fullPoints = fullPoints.concat(contourPoints, contourPointsRev, basePts, basePtsRev);

    let ps = [];
    let parts = [];
    fullPoints.forEach(p => {
      ps.push(p.x, p.y, p.z);
      parts.push(1);
    });

    let plane = new THREE.PlaneGeometry(1, 1, (contourPoints.length-1) * 2, 1);
    plane.setAttribute("position", new THREE.Float32BufferAttribute(ps, 3));
    plane.setAttribute("parts", new THREE.Float32BufferAttribute(parts, 1));
    plane.computeVertexNormals();
    return plane;
  }

  function computeFrames(){
    let frames = [];
    let step = 0.05;
    frames.push(new Array(divisions + 1).fill(0).map(p => {return new THREE.Vector3()})); // first frame all 0
    for(let i = step; i < 10; i += step){
      frames.push(getFrame(i));
    }
    frames.push(getFramePoints(topPoints[100], bottomPoints[100], sidePoints[100])); // last frame at tail
    //console.log(frames[frames.length - 1]);
    return frames;
  }

  function getFrame(x){
    let top = getPoint(topPoints, x);
    let bottom = getPoint(bottomPoints, x);
    let side = getPoint(sidePoints, x);
    return getFramePoints(top, bottom, side);
  }

  function getFramePoints(top, bottom, side){
    let sideR = side;
    let sideL = sideR.clone().setZ(sideR.z * -1);
    let baseCurve = new THREE.CatmullRomCurve3([
      bottom,
      sideR,
      top,
      sideL
    ], true);

    let framePoints = baseCurve.getSpacedPoints(divisions);
    return framePoints;
  }

  function getPoint(curvePoints, x){
    let v = new THREE.Vector3();
    for(let i = 0; i < curvePoints.length - 1; i++){
      let i1 = curvePoints[i];
      let i2 = curvePoints[i+1];
      if (x >= i1.x && x <= i2.x){
        let a = (x - i1.x) / (i2.x - i1.x);
        return v.lerpVectors(i1, i2, a);
      }
    }
  }

  function addPartIndex(geometry, partIndex){
    let counter = geometry.attributes.position.count;
  }

}


              
            
!
999px

Console