HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<script>
let simpleNoise = `
float N (vec2 st) { // https://thebookofshaders.com/10/
return fract( sin( dot( st.xy, vec2(12.9898,78.233 ) ) ) * 43758.5453123);
}
float smoothNoise( vec2 ip ){ // https://www.youtube.com/watch?v=zXsWftRdsvU
vec2 lv = fract( ip );
vec2 id = floor( ip );
lv = lv * lv * ( 3. - 2. * lv );
float bl = N( id );
float br = N( id + vec2( 1, 0 ));
float b = mix( bl, br, lv.x );
float tl = N( id + vec2( 0, 1 ));
float tr = N( id + vec2( 1, 1 ));
float t = mix( tl, tr, lv.x );
return mix( b, t, lv.y );
}
`;
let caustic = `
vec2 cPos = vPos.xz - (1, 0.25) * vPos.y;
vec2 cUv = (cPos - vec2(time * 1.5, 0.));
float caustic = abs(smoothNoise(cUv) - 0.5);
caustic = pow(smoothstep(0.5, 0., caustic), 2.);
float causticFade = smoothNoise(cPos - vec2(time, 0.));
caustic *= causticFade;
float causticShade = clamp(dot(normalize(vec3(1, 1, 0.25)), vN), 0., 1.);
caustic *= causticShade;
gl_FragColor.rgb += vec3(caustic) * 0.25;
`;
</script>
body{
overflow: hidden;
margin: 0;
}
console.clear();
import * as THREE from "https://cdn.skypack.dev/[email protected]";
import {BufferGeometryUtils} from "https://cdn.skypack.dev/[email protected]/examples/jsm/utils/BufferGeometryUtils.js";
import {OrbitControls} from "https://cdn.skypack.dev/[email protected]/examples/jsm/controls/OrbitControls.js";
let scene = new THREE.Scene();
let camera = new THREE.PerspectiveCamera(45, innerWidth / innerHeight, 0.1, 1000);
camera.position.set(-5, 0, 10);
let renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setSize(innerWidth, innerHeight);
renderer.setClearColor(0x66775f);
document.body.appendChild(renderer.domElement);
let controls = new OrbitControls(camera, renderer.domElement);
controls.enablePan = false;
controls.enableDamping = true;
controls.maxPolarAngle = THREE.MathUtils.degToRad(120);
controls.minDistance = 10;
controls.maxDistance = 20;
controls.target.set(6, 0, 0);
controls.update();
let light = new THREE.DirectionalLight(0xffffff, 1);
light.position.set(1.0, 1.0, 0.25);
scene.add(light, new THREE.AmbientLight(0xffffff, 1));
// fish
let fishGeom = createFishGeometry();
let fishMat = createFishMaterial();
let fishSize = new THREE.Box3().setFromBufferAttribute(fishGeom.attributes.position);
fishMat.userData.uniforms.totalLength.value = fishSize.max.x;
//console.log(fishSize.max.x);
let fish = new THREE.Mesh(fishGeom, fishMat)
scene.add(fish);
// weed
let weedGeom = createWeedGeometry();
let weedMat = createWeedMaterial();
let weed = new THREE.Mesh(weedGeom, weedMat);
scene.add(weed);
// back
let backGeom = createBackGeometry();
let backMat = createBackMaterial();
let backMesh = new THREE.Mesh(backGeom, backMat);
scene.add(backMesh);
window.onresize = function () {
camera.aspect = innerWidth / innerHeight;
camera.updateProjectionMatrix();
renderer.setSize( innerWidth, innerHeight );
};
// RENDER /////////////////////////////////////////////////////////////////////////////////////////////////////////
let clock = new THREE.Clock();
renderer.setAnimationLoop(() => {
let t = clock.getElapsedTime();
fishMat.userData.uniforms.time.value = t * 1.5;
weedMat.userData.uniforms.time.value = t;
fish.position.y = Math.sin(t * 0.314) * 0.25;
fish.position.z = Math.cos(t * 0.27) * 0.75;
controls.update();
renderer.render(scene, camera);
});
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function createBackMaterial(){
let m = new THREE.MeshBasicMaterial({
color: 0x66775f,
side: THREE.BackSide,
onBeforeCompile: shader => {
shader.fragmentShader = `
${shader.fragmentShader}
`.replace(
`vec4 diffuseColor = vec4( diffuse, opacity );`,
`
vec3 col = mix(diffuse, diffuse + vec3(0.75), smoothstep(0.5, 0.7, vUv.y));
vec4 diffuseColor = vec4( col, opacity );
`
);
;
//console.log(shader.fragmentShader);
}
});
m.defines = {"USE_UV" : ""};
return m;
}
function createBackGeometry(){
let g = new THREE.SphereGeometry(500, 32, 16);
g.translate(6, 0, 0);
return g;
}
function createWeedMaterial(){
let m = new THREE.MeshLambertMaterial({
wireframe: false,
onBeforeCompile: shader => {
shader.uniforms.time = m.userData.uniforms.time;
shader.vertexShader = `
uniform float time;
varying vec4 vPos;
${simpleNoise}
${shader.vertexShader}
`.replace(
`#include <begin_vertex>`,
`#include <begin_vertex>
vec2 waveUv = uv * vec2(5., 8.);
float wave = smoothNoise(waveUv - vec2(time, 0.));
transformed.y += wave * 2.;
vPos = modelMatrix * vec4(transformed, 1.0);
`
);
//console.log(shader.vertexShader);
shader.fragmentShader = `
uniform float time;
varying vec4 vPos;
${simpleNoise}
${shader.fragmentShader}
`.replace(
`vec4 diffuseColor = vec4( diffuse, opacity );`,
`
vec3 col = vec3(0);
vec2 weedUv = (vUv - vec2(time / 20., 0.)) * vec2(20., 1000.);
float weed = smoothNoise(weedUv);
col = mix(vec3(0.4, 0.5, 0.2), vec3(0.1, 0.15, 0.05), weed) * 0.75;
float circleDist = length(vUv - 0.5);
//if (circleDist > 0.5) discard;
vec4 diffuseColor = vec4( col, opacity );`
).replace(
`#include <dithering_fragment>`,
`#include <dithering_fragment>
// fake caustic
vec2 cPos = vPos.xz * 0.25;
vec2 cUv = (cPos * vec2(0.5, 1.) - vec2(time * 0.5, 0.));
float caustic = abs(smoothNoise(cUv) - 0.5);
caustic = pow(smoothstep(0.5, 0., caustic), 2.);
float causticFade = smoothNoise(cPos - vec2(time, 0.));
caustic *= causticFade;
gl_FragColor.rgb += vec3(caustic) * 0.25;
gl_FragColor.rgb = mix(vec3(102, 119, 95) / 255., gl_FragColor.rgb, smoothstep(0.5, 0., circleDist));
`
);
//console.log(shader.fragmentShader);
}
});
m.defines = {"USE_UV" : ""};
m.userData = {
uniforms: {
time: {
value: 0
}
}
}
return m;
}
function createWeedGeometry(){
let g = new THREE.PlaneGeometry(50, 50, 200, 200);
g.rotateX(Math.PI * -0.5);
g.translate(6, -10, 0);
return g;
}
function createFishMaterial(){
let mapTex = new THREE.TextureLoader().load('https://threejs.org/examples/textures/uv_grid_opengl.jpg');
let m = new THREE.MeshPhongMaterial({
color: 0x446655,
wireframe: false,
//map: mapTex,
onBeforeCompile: shader => {
shader.uniforms.time = m.userData.uniforms.time;
shader.uniforms.totalLength = m.userData.uniforms.totalLength;
shader.vertexShader = `
uniform float time;
uniform float totalLength;
attribute float parts;
varying float vParts;
varying vec4 vPos;
varying vec3 vN;
float getWave(float x){
float currX = mod(x - (time * 4.), 3.1415926535 * 2.);
return sin(currX) * 0.375 * pow((x / totalLength), 2.);
}
float getAngle(float x){
float d = 0.001;
float dz = getWave(x + d) - getWave(x);
return atan( dz, d );
}
// https://gist.github.com/yiwenl/3f804e80d0930e34a0b33359259b556c //
mat4 rotationMatrix(vec3 axis, float angle) {
axis = normalize(axis);
float s = sin(angle);
float c = cos(angle);
float oc = 1.0 - c;
return mat4(oc * axis.x * axis.x + c, oc * axis.x * axis.y - axis.z * s, oc * axis.z * axis.x + axis.y * s, 0.0,
oc * axis.x * axis.y + axis.z * s, oc * axis.y * axis.y + c, oc * axis.y * axis.z - axis.x * s, 0.0,
oc * axis.z * axis.x - axis.y * s, oc * axis.y * axis.z + axis.x * s, oc * axis.z * axis.z + c, 0.0,
0.0, 0.0, 0.0, 1.0);
}
vec3 rotate(vec3 v, vec3 axis, float angle) {
mat4 m = rotationMatrix(axis, angle);
return (m * vec4(v, 1.0)).xyz;
}
/////////////////////////////////////////////////////////////////////
${shader.vertexShader}
`.replace(
`#include <beginnormal_vertex>`,
`#include <beginnormal_vertex>
float ang = getAngle(position.x);
objectNormal = normalize(rotate(vec3(normal), vec3(0, 1, 0), ang));
vN = objectNormal;
`
)
.replace(
`#include <begin_vertex>`,
`#include <begin_vertex>
vParts = parts;
transformed.z += getWave(position.x);
vPos = modelMatrix * vec4(transformed, 1.0);
`
);
//console.log(shader.vertexShader);
shader.fragmentShader = `
uniform float time;
varying float vParts;
varying vec4 vPos;
varying vec3 vN;
${simpleNoise}
${shader.fragmentShader}
`.replace(
`vec4 diffuseColor = vec4( diffuse, opacity );`,
`
vec3 col = diffuse;
float parts = floor(vParts + 0.01);
if (parts == 0.){
col = diffuse;
float wave = sin(vUv.y * PI2 * 6.) * 0.5 + 0.5;
col *= wave * 0.15 + 0.2;
col = mix(diffuse, col, smoothstep(0.9, 0.5, abs(vUv.x - 0.5) * 2.));
col = mix(col, diffuse * 0.25, smoothstep(0.2, 0.0, vUv.y));
float head = abs(sin(vUv.x * PI2));
head = head * 0.05 + 0.175;
col = mix(diffuse * 0.25, col, smoothstep(1. - head, 1. - (head + 0.025), vUv.y));
vec2 eyeUv = vUv;
eyeUv.x = abs(vUv.x - 0.5) * 0.35;
float eyeDist = distance(vec2(0.07, 0.875), eyeUv);
float eye = smoothstep(0.02, 0.0175, eyeDist);
col = mix(col, vec3(1, 1, 0) * 0.2, eye);
eye = smoothstep(0.015, 0.0125, eyeDist);
col = mix(col, vec3(0.05), eye);
vec2 mouthUv = vUv;
mouthUv.x = abs(vUv.x - 0.5) * 2.;
mouthUv.x -= mouthUv.y * 0.25;
float mouth = 1. - (cos(mouthUv.x * PI2) * 0.5 + 0.5);
mouth = pow(mouth, 64.) * 0.05 + 0.001;
mouth = 1. - mouth;
col = mix(diffuse * 0.4, col, smoothstep(mouth, mouth - 0.001, mouthUv.y));
}
if (parts == 1.){
col = (vec3(0.375, 0.1, 0.05) * 3.) * diffuse;
float wave = sin(vUv.x * PI2 * 70.) * 0.5 + 0.5;
wave *= sin(vUv.y * PI2 * 5.) * 0.5 + 0.5;
col *= wave * 0.25 + 0.75;
vec2 tailUv = vUv;
tailUv.y -= 0.5;
tailUv.y = abs(tailUv.y) * 2.;
col = mix(diffuse * 0.25, col, smoothstep(1., 0.5, tailUv.y));
}
vec4 diffuseColor = vec4( col, opacity );
`
).replace(
`#include <dithering_fragment>`,
`#include <dithering_fragment>
// fake caustic
vec2 cPos = vPos.xz - (1, 0.25) * vPos.y;
vec2 cUv = (cPos - vec2(time * 1.5, 0.));
float caustic = abs(smoothNoise(cUv) - 0.5);
caustic = pow(smoothstep(0.5, 0., caustic), 2.);
float causticFade = smoothNoise(cPos - vec2(time, 0.));
caustic *= causticFade;
float causticShade = clamp(dot(normalize(vec3(1, 1, 0.25)), vN), 0., 1.);
caustic *= causticShade;
gl_FragColor.rgb += vec3(caustic) * 0.25;
`
);
//console.log(shader.fragmentShader);
}
});
m.defines = {"USE_UV" : " "};
m.userData = {
uniforms: {
time: {value: 0},
totalLength: {value: 0}
}
}
return m;
}
function createFishGeometry(){
const divisions = 200;
// shaping curves
// top
let topCurve = new THREE.CatmullRomCurve3(
[
[0, 0],
[0.1, 0.15],
[1, 0.75],
[3.5, 1.5],
[9, 0.5],
[9.5, 0.45],
[10, 0.55]
].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
);
let topPoints = topCurve.getSpacedPoints(100);
// bottom
let bottomCurve = new THREE.CatmullRomCurve3(
[
[0, 0],
[0.1, -0.15],
[0.5, -0.35],
[4.5, -1],
[8, -0.6],
[9.5, -0.45],
[10, -0.55]
].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
);
let bottomPoints = bottomCurve.getSpacedPoints(100);
// side
let sideCurve = new THREE.CatmullRomCurve3(
[
[0, 0, 0],
[0.1, 0, 0.125],
[1, 0, 0.375],
[4,-0.25, 0.6],
[8, 0, 0.25],
[10, 0, 0.05]
].map(p => {return new THREE.Vector3(p[0], p[1], p[2])})
);
let sidePoints = sideCurve.getSpacedPoints(100);
// frames
let frames = computeFrames();
//console.log(frames);
// frames to geometry
let pts = [];
let parts = [];
frames.forEach(f => {
f.forEach(p => {
pts.push(p.x, p.y, p.z);
parts.push(0);
})
})
// FINS
// tail fin
let tailCurve = new THREE.CatmullRomCurve3(
[
[11, -1.],
[12.5, -1.5],
[12., 0],
[12.5, 1.5],
[11, 1.],
].map(p => {return new THREE.Vector3(p[0], p[1], p[2])})
);
let tailPoints = tailCurve.getPoints(divisions / 2);
let tailPointsRev = tailPoints.map(p => {return p}).reverse();
tailPointsRev.shift();
let fullTailPoints = tailPoints.concat(tailPointsRev);
let tailfinSlices = 5;
let tailRatioStep = 1 / tailfinSlices;
let vTemp = new THREE.Vector3();
let tailPts = [];
let tailParts = [];
for(let i = 0; i <= tailfinSlices; i++){
let ratio = i * tailRatioStep;
frames[frames.length - 1].forEach( (p, idx) => {
vTemp.lerpVectors(p, fullTailPoints[idx], ratio);
tailPts.push(vTemp.x, vTemp.y, vTemp.z);
tailParts.push(1);
})
}
let gTail = new THREE.PlaneGeometry(1, 1, divisions, tailfinSlices);
gTail.setAttribute("position", new THREE.Float32BufferAttribute(tailPts, 3));
gTail.setAttribute("parts", new THREE.Float32BufferAttribute(tailParts, 1));
gTail.computeVertexNormals();
// dorsal
let dorsalCurve = new THREE.CatmullRomCurve3(
[
[3, 1.45],
[3.25, 2.25],
[3.75, 3],
[6, 2],
[7, 1]
].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
);
let dorsalPoints = dorsalCurve.getSpacedPoints(100);
let gDorsal = createFin(topPoints, dorsalPoints, true);
// rect
let rectCurve = new THREE.CatmullRomCurve3(
[
[6, -0.9],
[7.25, -1.5],
[7.5, -0.75]
].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
);
let rectPoints = rectCurve.getSpacedPoints(40);
let gRect = createFin(bottomPoints, rectPoints, false);
// pelvic
let pelvicCurve = new THREE.CatmullRomCurve3(
[
[2.25, -0.7],
[3.75, -2],
[4, -1]
].map(p => {return new THREE.Vector3(p[0], p[1], 0)})
);
let pelvicPoints = pelvicCurve.getSpacedPoints(40);
let gPelvic = createFin(bottomPoints, pelvicPoints, false);
gPelvic.translate(0, 0.6, 0);
let gPelvicL = gPelvic.clone();
gPelvicL.rotateX(THREE.MathUtils.degToRad(-20));
gPelvicL.translate(0, -0.6, 0);
let gPelvicR = gPelvic.clone();
gPelvicR.rotateX(THREE.MathUtils.degToRad(20));
gPelvicR.translate(0, -0.6, 0);
let bodyGeom = new THREE.PlaneGeometry(1, 1, divisions, frames.length - 1);
bodyGeom.setAttribute("position", new THREE.Float32BufferAttribute(pts, 3));
bodyGeom.setAttribute("parts", new THREE.Float32BufferAttribute(parts, 1));
bodyGeom.computeVertexNormals();
let mainGeom = BufferGeometryUtils.mergeBufferGeometries([bodyGeom, gTail, gDorsal, gRect, gPelvicL, gPelvicR]);
//console.log(mainGeom.attributes.position.count)
return mainGeom;
function createFin(basePoints, contourPoints, isTop){
let basePts = [];
let shift = 0.05;
let shiftSign = isTop ? 1 : -1;
let vAdd = new THREE.Vector3(0, -shift * shiftSign, 0);
contourPoints.forEach((p, idx) => {
basePts.push(getPoint(basePoints, p.x).add(vAdd));
});
let basePtsRev = basePts.map(p => {return p.clone()}).reverse();
basePtsRev.shift();
let contourPointsRev = contourPoints.map(p => {return p.clone()}).reverse();
contourPointsRev.shift();
basePts.forEach((p, idx, arr) => {
if (idx > 0 && idx < arr.length - 1) p.setZ(shift * shiftSign)
});
basePtsRev.forEach((p, idx, arr) => {
if (idx < arr.length - 1) p.setZ(-shift * shiftSign)
});
console.log(contourPoints.length, contourPointsRev.length, basePts.length, basePtsRev.length);
let fullPoints = [];
fullPoints = fullPoints.concat(contourPoints, contourPointsRev, basePts, basePtsRev);
let ps = [];
let parts = [];
fullPoints.forEach(p => {
ps.push(p.x, p.y, p.z);
parts.push(1);
});
let plane = new THREE.PlaneGeometry(1, 1, (contourPoints.length-1) * 2, 1);
plane.setAttribute("position", new THREE.Float32BufferAttribute(ps, 3));
plane.setAttribute("parts", new THREE.Float32BufferAttribute(parts, 1));
plane.computeVertexNormals();
return plane;
}
function computeFrames(){
let frames = [];
let step = 0.05;
frames.push(new Array(divisions + 1).fill(0).map(p => {return new THREE.Vector3()})); // first frame all 0
for(let i = step; i < 10; i += step){
frames.push(getFrame(i));
}
frames.push(getFramePoints(topPoints[100], bottomPoints[100], sidePoints[100])); // last frame at tail
//console.log(frames[frames.length - 1]);
return frames;
}
function getFrame(x){
let top = getPoint(topPoints, x);
let bottom = getPoint(bottomPoints, x);
let side = getPoint(sidePoints, x);
return getFramePoints(top, bottom, side);
}
function getFramePoints(top, bottom, side){
let sideR = side;
let sideL = sideR.clone().setZ(sideR.z * -1);
let baseCurve = new THREE.CatmullRomCurve3([
bottom,
sideR,
top,
sideL
], true);
let framePoints = baseCurve.getSpacedPoints(divisions);
return framePoints;
}
function getPoint(curvePoints, x){
let v = new THREE.Vector3();
for(let i = 0; i < curvePoints.length - 1; i++){
let i1 = curvePoints[i];
let i2 = curvePoints[i+1];
if (x >= i1.x && x <= i2.x){
let a = (x - i1.x) / (i2.x - i1.x);
return v.lerpVectors(i1, i2, a);
}
}
}
function addPartIndex(geometry, partIndex){
let counter = geometry.attributes.position.count;
}
}
Also see: Tab Triggers