HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="info">patience... we're deforming the spheres</div>
<div id="writing">SYNAPSES</div>
<script type="x-shader/x-vertex" id="vertexshader">
varying vec2 vUv;
void main() {
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}
</script>
<script type="x-shader/x-fragment" id="fragmentshader">
uniform sampler2D baseTexture;
uniform sampler2D bloomTexture;
varying vec2 vUv;
void main() {
gl_FragColor = ( texture2D( baseTexture, vUv ) + vec4( 1.0 ) * texture2D( bloomTexture, vUv ) );
}
</script>
<script>
const noiseV3 = `
// Simplex 4D Noise
// by Ian McEwan, Ashima Arts
//
vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}
vec4 grad4(float j, vec4 ip){
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
float snoise(vec4 v){
const vec2 C = vec2( 0.138196601125010504, // (5 - sqrt(5))/20 G4
0.309016994374947451); // (sqrt(5) - 1)/4 F4
// First corner
vec4 i = floor(v + dot(v, C.yyyy) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C
vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;
// Permutations
i = mod(i, 289.0);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients
// ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
`;
const noise = `
// https://gist.github.com/patriciogonzalezvivo/670c22f3966e662d2f83
/*float rand(vec2 c){
return fract(sin(dot(c.xy ,vec2(12.9898,78.233))) * 43758.5453);
}*/
float noise(vec2 p, float freq ){
float unit = 2.; //screenWidth/freq;
vec2 ij = floor(p/unit);
vec2 xy = mod(p,unit)/unit;
//xy = 3.*xy*xy-2.*xy*xy*xy;
xy = .5*(1.-cos(PI*xy));
float a = rand((ij+vec2(0.,0.)));
float b = rand((ij+vec2(1.,0.)));
float c = rand((ij+vec2(0.,1.)));
float d = rand((ij+vec2(1.,1.)));
float x1 = mix(a, b, xy.x);
float x2 = mix(c, d, xy.x);
return mix(x1, x2, xy.y);
}
float pNoise(vec2 p, int res){
float persistance = .5;
float n = 0.;
float normK = 0.;
float f = 4.;
float amp = 1.;
int iCount = 0;
for (int i = 0; i<50; i++){
n+=amp*noise(p, f);
f*=2.;
normK+=amp;
amp*=persistance;
if (iCount == res) break;
iCount++;
}
float nf = n/normK;
return nf*nf*nf*nf;
}
`;
const flVert = `
#include <common>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
uniform float linewidth;
uniform vec2 resolution;
attribute vec3 instanceStart;
attribute vec3 instanceEnd;
attribute vec3 instanceColorStart;
attribute vec3 instanceColorEnd;
#ifdef WORLD_UNITS
varying vec4 worldPos;
varying vec3 worldStart;
varying vec3 worldEnd;
varying vec2 vUv;
#else
varying vec2 vUv;
#endif
attribute float instanceDistanceStart;
attribute float instanceDistanceEnd;
varying float vLineDistance;
void trimSegment( const in vec4 start, inout vec4 end ) {
// trim end segment so it terminates between the camera plane and the near plane
// conservative estimate of the near plane
float a = projectionMatrix[ 2 ][ 2 ]; // 3nd entry in 3th column
float b = projectionMatrix[ 3 ][ 2 ]; // 3nd entry in 4th column
float nearEstimate = - 0.5 * b / a;
float alpha = ( nearEstimate - start.z ) / ( end.z - start.z );
end.xyz = mix( start.xyz, end.xyz, alpha );
}
void main() {
#ifdef USE_COLOR
vColor.xyz = ( position.y < 0.5 ) ? instanceColorStart : instanceColorEnd;
#endif
vLineDistance = ( position.y < 0.5 ) ? instanceDistanceStart : instanceDistanceEnd;
vUv = uv;
float aspect = resolution.x / resolution.y;
// camera space
vec4 start = modelViewMatrix * vec4( instanceStart, 1.0 );
vec4 end = modelViewMatrix * vec4( instanceEnd, 1.0 );
#ifdef WORLD_UNITS
worldStart = start.xyz;
worldEnd = end.xyz;
#else
vUv = uv;
#endif
// special case for perspective projection, and segments that terminate either in, or behind, the camera plane
// clearly the gpu firmware has a way of addressing this issue when projecting into ndc space
// but we need to perform ndc-space calculations in the shader, so we must address this issue directly
// perhaps there is a more elegant solution -- WestLangley
bool perspective = ( projectionMatrix[ 2 ][ 3 ] == - 1.0 ); // 4th entry in the 3rd column
if ( perspective ) {
if ( start.z < 0.0 && end.z >= 0.0 ) {
trimSegment( start, end );
} else if ( end.z < 0.0 && start.z >= 0.0 ) {
trimSegment( end, start );
}
}
// clip space
vec4 clipStart = projectionMatrix * start;
vec4 clipEnd = projectionMatrix * end;
// ndc space
vec3 ndcStart = clipStart.xyz / clipStart.w;
vec3 ndcEnd = clipEnd.xyz / clipEnd.w;
// direction
vec2 dir = ndcEnd.xy - ndcStart.xy;
// account for clip-space aspect ratio
dir.x *= aspect;
dir = normalize( dir );
#ifdef WORLD_UNITS
// get the offset direction as perpendicular to the view vector
vec3 worldDir = normalize( end.xyz - start.xyz );
vec3 offset;
if ( position.y < 0.5 ) {
offset = normalize( cross( start.xyz, worldDir ) );
} else {
offset = normalize( cross( end.xyz, worldDir ) );
}
// sign flip
if ( position.x < 0.0 ) offset *= - 1.0;
float forwardOffset = dot( worldDir, vec3( 0.0, 0.0, 1.0 ) );
// don't extend the line if we're rendering dashes because we
// won't be rendering the endcaps
#ifndef USE_DASH
// extend the line bounds to encompass endcaps
start.xyz += - worldDir * linewidth * 0.5;
end.xyz += worldDir * linewidth * 0.5;
// shift the position of the quad so it hugs the forward edge of the line
offset.xy -= dir * forwardOffset;
offset.z += 0.5;
#endif
// endcaps
if ( position.y > 1.0 || position.y < 0.0 ) {
offset.xy += dir * 2.0 * forwardOffset;
}
// adjust for linewidth
offset *= linewidth * 0.5;
// set the world position
worldPos = ( position.y < 0.5 ) ? start : end;
worldPos.xyz += offset;
// project the worldpos
vec4 clip = projectionMatrix * worldPos;
// shift the depth of the projected points so the line
// segements overlap neatly
vec3 clipPose = ( position.y < 0.5 ) ? ndcStart : ndcEnd;
clip.z = clipPose.z * clip.w;
#else
vec2 offset = vec2( dir.y, - dir.x );
// undo aspect ratio adjustment
dir.x /= aspect;
offset.x /= aspect;
// sign flip
if ( position.x < 0.0 ) offset *= - 1.0;
// endcaps
if ( position.y < 0.0 ) {
offset += - dir;
} else if ( position.y > 1.0 ) {
offset += dir;
}
// adjust for linewidth
offset *= linewidth;
// adjust for clip-space to screen-space conversion // maybe resolution should be based on viewport ...
offset /= resolution.y;
// select end
vec4 clip = ( position.y < 0.5 ) ? clipStart : clipEnd;
// back to clip space
offset *= clip.w;
clip.xy += offset;
#endif
gl_Position = clip;
vec4 mvPosition = ( position.y < 0.5 ) ? start : end; // this is an approximation
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
#include <fog_vertex>
}
`;
const flFrag = `
uniform float time;
uniform float bloom;
uniform vec3 diffuse;
uniform float opacity;
uniform float linewidth;
#ifdef USE_DASH
uniform float dashOffset;
uniform float dashSize;
uniform float gapSize;
#endif
varying float vLineDistance;
#ifdef WORLD_UNITS
varying vec4 worldPos;
varying vec3 worldStart;
varying vec3 worldEnd;
varying vec2 vUv;
#else
varying vec2 vUv;
#endif
#include <common>
#include <color_pars_fragment>
#include <fog_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
vec2 closestLineToLine(vec3 p1, vec3 p2, vec3 p3, vec3 p4) {
float mua;
float mub;
vec3 p13 = p1 - p3;
vec3 p43 = p4 - p3;
vec3 p21 = p2 - p1;
float d1343 = dot( p13, p43 );
float d4321 = dot( p43, p21 );
float d1321 = dot( p13, p21 );
float d4343 = dot( p43, p43 );
float d2121 = dot( p21, p21 );
float denom = d2121 * d4343 - d4321 * d4321;
float numer = d1343 * d4321 - d1321 * d4343;
mua = numer / denom;
mua = clamp( mua, 0.0, 1.0 );
mub = ( d1343 + d4321 * ( mua ) ) / d4343;
mub = clamp( mub, 0.0, 1.0 );
return vec2( mua, mub );
}
${noise}
void main() {
#include <clipping_planes_fragment>
#ifdef USE_DASH
if ( vUv.y < - 1.0 || vUv.y > 1.0 ) discard; // discard endcaps
if ( mod( vLineDistance + dashOffset, dashSize + gapSize ) > dashSize ) discard; // todo - FIX
#endif
float alpha = opacity;
#ifdef WORLD_UNITS
// Find the closest points on the view ray and the line segment
vec3 rayEnd = normalize( worldPos.xyz ) * 1e5;
vec3 lineDir = worldEnd - worldStart;
vec2 params = closestLineToLine( worldStart, worldEnd, vec3( 0.0, 0.0, 0.0 ), rayEnd );
vec3 p1 = worldStart + lineDir * params.x;
vec3 p2 = rayEnd * params.y;
vec3 delta = p1 - p2;
float len = length( delta );
float norm = len / linewidth;
#ifndef USE_DASH
#ifdef USE_ALPHA_TO_COVERAGE
float dnorm = fwidth( norm );
alpha = 1.0 - smoothstep( 0.5 - dnorm, 0.5 + dnorm, norm );
#else
if ( norm > 0.5 ) {
discard;
}
#endif
#endif
#else
#ifdef USE_ALPHA_TO_COVERAGE
// artifacts appear on some hardware if a derivative is taken within a conditional
float a = vUv.x;
float b = ( vUv.y > 0.0 ) ? vUv.y - 1.0 : vUv.y + 1.0;
float len2 = a * a + b * b;
float dlen = fwidth( len2 );
if ( abs( vUv.y ) > 1.0 ) {
alpha = 1.0 - smoothstep( 1.0 - dlen, 1.0 + dlen, len2 );
}
#else
if ( abs( vUv.y ) > 1.0 ) {
float a = vUv.x;
float b = ( vUv.y > 0.0 ) ? vUv.y - 1.0 : vUv.y + 1.0;
float len2 = a * a + b * b;
if ( len2 > 1.0 ) discard;
}
#endif
#endif
float pn1 = abs(pNoise(vec2(vLineDistance * 0.05, time), 3)) * 0.75;
float pn2 = pNoise(vec2(vLineDistance * 25. + time * 4., 0.123), 10) * 0.5 + 0.5;
pn2 = clamp(pow(pn2, 4.), 0., 1.);
vec3 c = mix(vec3(0, 0, 0.25), diffuse, pn1);
c = mix(c, diffuse, pn2);
vec4 diffuseColor = vec4( c, alpha );
#include <logdepthbuf_fragment>
#include <color_fragment>
gl_FragColor = vec4( diffuseColor.rgb, alpha );
#include <tonemapping_fragment>
#include <encodings_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
vec3 col = gl_FragColor.rgb;
gl_FragColor.rgb = mix(gl_FragColor.rgb, vec3(0), bloom);
gl_FragColor.rgb = mix(gl_FragColor.rgb, mix(vec3(1), col, bloom), pn2);
}
`;
</script>
@import url('https://fonts.googleapis.com/css2?family=Orbitron&display=swap');
body{
overflow: hidden;
margin: 0;
}
#info{
position: absolute;
width: 100%;
top: 50%;
text-align: center;
font-family: 'Orbitron', sans-serif;
font-size: 2vh;
color: black;
}
#writing{
visibility: hidden;
position: absolute;
font-family: 'Orbitron', sans-serif;
font-size: 10vh;
bottom: 2vh;
left: calc(50% - 33vh);
color: #0be;
text-shadow: 0px -3px 2px white;
}
import * as THREE from "https://cdn.skypack.dev/three@0.136.0";
import {OrbitControls} from "https://cdn.skypack.dev/three@0.136.0/examples/jsm/controls/OrbitControls";
import { ImprovedNoise } from 'https://cdn.skypack.dev/three@0.136.0/examples/jsm/math/ImprovedNoise';
import { Line2 } from "https://cdn.skypack.dev/three@0.136.0/examples/jsm/lines/Line2";
import { LineMaterial } from "https://cdn.skypack.dev/three@0.136.0/examples/jsm/lines/LineMaterial";
import { LineGeometry } from "https://cdn.skypack.dev/three@0.136.0/examples/jsm/lines/LineGeometry";
import { EffectComposer } from 'https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/EffectComposer.js';
import { RenderPass } from 'https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/RenderPass.js';
import { ShaderPass } from 'https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/ShaderPass.js';
import { UnrealBloomPass } from 'https://cdn.skypack.dev/three@0.136.0/examples/jsm/postprocessing/UnrealBloomPass.js';
const perlin = new ImprovedNoise();
let v3 = new THREE.Vector3();
let scene = new THREE.Scene();
let camera = new THREE.PerspectiveCamera(45, innerWidth / innerHeight, 1, 5000);
camera.position.set(5, 2, 5).setLength(12);
let renderer = new THREE.WebGLRenderer({antialias: true});
renderer.setSize(innerWidth, innerHeight);
renderer.toneMapping = THREE.ReinhardToneMapping;
document.body.appendChild(renderer.domElement);
window.addEventListener("resize", () => {
camera.aspect = innerWidth / innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(innerWidth, innerHeight);
m.resolution.set(innerWidth, innerHeight);
bloomPass.resolution.set(innerWidth, innerHeight);
})
let controls = new OrbitControls(camera, renderer.domElement);
controls.enablePan = false;
controls.enableDamping = true;
controls.minDistance = 1;
controls.maxDistance = 15;
// <CURVE>
let curvePts = new Array(200).fill().map(p => {
return new THREE.Vector3().randomDirection();
})
let curve = new THREE.CatmullRomCurve3(curvePts, true);
let pts = curve.getSpacedPoints(200);
pts.shift();
curve = new THREE.CatmullRomCurve3(pts, true);
pts = curve.getSpacedPoints(10000);
pts.forEach(p => {p.setLength(4)});
let n = new THREE.Vector3();
let s = new THREE.Vector3(0.5, 0.5, 1.);
pts.forEach(p => {
deform(p);
})
let fPts = [];
pts.forEach(p => {fPts.push(p.x, p.y, p.z)});
let g = new LineGeometry();
g.setPositions(fPts);
let globalUniforms = {
time: {value: 0},
bloom: {value: 0}
}
let m = new LineMaterial({
color: "magenta",
worldUnits: true,
linewidth: 0.0375,
alphaToCoverage: true,
onBeforeCompile: shader => {
shader.uniforms.time = globalUniforms.time;
shader.uniforms.bloom = globalUniforms.bloom;
shader.vertexShader = flVert;
shader.fragmentShader = flFrag;
}
});
m.resolution.set(innerWidth, innerHeight);
let l = new Line2(g, m);
l.computeLineDistances();
scene.add(l);
// </CURVE>
// <SPHERE>
let sg = new THREE.IcosahedronGeometry(1, 70);
for(let i = 0; i < sg.attributes.position.count; i++){
v3.fromBufferAttribute(sg.attributes.position, i);
deform(v3);
sg.attributes.position.setXYZ(i, v3.x, v3.y, v3.z);
}
let sm = new THREE.MeshBasicMaterial({
color: 0x7f00ff,
wireframe: true,
transparent: true,
onBeforeCompile: shader => {
shader.uniforms.bloom = globalUniforms.bloom;
shader.uniforms.time = globalUniforms.time;
shader.vertexShader = `
varying vec3 vN;
${shader.vertexShader}
`.replace(
`#include <begin_vertex>`,
`#include <begin_vertex>
vN = normal;
`
);
//console.log(shader.vertexShader);
shader.fragmentShader = `
uniform float bloom;
uniform float time;
varying vec3 vN;
${noiseV3}
${shader.fragmentShader}
`.replace(
`#include <dithering_fragment>`,
`#include <dithering_fragment>
float ns = snoise(vec4(vN * 1.5, time * 0.5));
ns = abs(ns);
vec3 col = mix(diffuse, vec3(0, 1, 1) * 0.5, ns);
gl_FragColor.rgb = mix(col, vec3(0), bloom);
gl_FragColor.a = ns;
gl_FragColor.rgb = mix(gl_FragColor.rgb, col, pow(ns, 16.));
`
);
}});
let sphere = new THREE.Mesh(sg, sm);
scene.add(sphere);
// </SPHERE>
// <LINKS>
let LINK_COUNT = 50;
let linkPts = [];
for(let i = 0; i < LINK_COUNT; i++){
let pS = new THREE.Vector3().randomDirection();
let pE = new THREE.Vector3().randomDirection();
let division = 100;
for(let j = 0; j < division; j++){
let v1 = new THREE.Vector3().lerpVectors(pS, pE, j / division);
let v2 = new THREE.Vector3().lerpVectors(pS, pE, (j + 1) / division);
deform(v1, true);
deform(v2, true);
linkPts.push(v1, v2);
}
}
let linkG = new THREE.BufferGeometry().setFromPoints(linkPts);
let linkM = new THREE.LineDashedMaterial({
color: 0xffff00,
onBeforeCompile: shader => {
shader.uniforms.time = globalUniforms.time;
shader.uniforms.bloom = globalUniforms.bloom;
shader.fragmentShader = `
uniform float bloom;
uniform float time;
${shader.fragmentShader}
`.replace(
`if ( mod( vLineDistance, totalSize ) > dashSize ) {
discard;
}`,
``
)
.replace(
`#include <premultiplied_alpha_fragment>`,
`#include <premultiplied_alpha_fragment>
vec3 col = diffuse;
gl_FragColor.rgb = mix(col * 0.5, vec3(0), bloom);
float sig = sin((vLineDistance * 2. + time * 5.) * 0.5) * 0.5 + 0.5;
sig = pow(sig, 16.);
gl_FragColor.rgb = mix(gl_FragColor.rgb, col * 0.75, sig);
`
);
//console.log(shader.fragmentShader);
}
});
let link = new THREE.LineSegments(linkG, linkM);
link.computeLineDistances();
scene.add(link);
// </LINKS>
// <BACKGROUND>
let bg = new THREE.SphereGeometry(1000, 64, 32);
let bm = new THREE.ShaderMaterial({
side: THREE.BackSide,
uniforms: {
bloom: globalUniforms.bloom,
time: globalUniforms.time
},
vertexShader:`
varying vec3 vNormal;
void main() {
vNormal = normal;
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
}
`,
fragmentShader:`
uniform float bloom;
uniform float time;
varying vec3 vNormal;
${noiseV3}
void main() {
vec3 col = vec3(0.012, 0, 0.1);
float ns = snoise(vec4(vNormal, time * 0.1));
col = mix(col * 5., col, pow(abs(ns), 0.125));
col = mix(col, vec3(0), bloom);
gl_FragColor = vec4( col, 1.0 );
}
`
});
let bo = new THREE.Mesh(bg, bm);
scene.add(bo);
// </BACKGROUND>
// <BLOOM>
const params = {
exposure: 1,
bloomStrength: 7,
bloomThreshold: 0,
bloomRadius: 0
};
const renderScene = new RenderPass( scene, camera );
const bloomPass = new UnrealBloomPass( new THREE.Vector2( window.innerWidth, window.innerHeight ), 1.5, 0.4, 0.85 );
bloomPass.threshold = params.bloomThreshold;
bloomPass.strength = params.bloomStrength;
bloomPass.radius = params.bloomRadius;
const bloomComposer = new EffectComposer( renderer );
bloomComposer.renderToScreen = false;
bloomComposer.addPass( renderScene );
bloomComposer.addPass( bloomPass );
const finalPass = new ShaderPass(
new THREE.ShaderMaterial( {
uniforms: {
baseTexture: { value: null },
bloomTexture: { value: bloomComposer.renderTarget2.texture }
},
vertexShader: document.getElementById( 'vertexshader' ).textContent,
fragmentShader: document.getElementById( 'fragmentshader' ).textContent,
defines: {}
} ), 'baseTexture'
);
finalPass.needsSwap = true;
const finalComposer = new EffectComposer( renderer );
finalComposer.addPass( renderScene );
finalComposer.addPass( finalPass );
// </BLOOM>
let clock = new THREE.Clock();
info.style.visibility = "hidden";
writing.style.visibility = "visible";
renderer.setAnimationLoop(() => {
let t = clock.getElapsedTime();
controls.update();
globalUniforms.time.value = t;
globalUniforms.bloom.value = 1;
//renderer.setClearColor(0x000000);
bloomComposer.render();
globalUniforms.bloom.value = 0;
//renderer.setClearColor(0x080032);
finalComposer.render();
//renderer.render(scene, camera);
})
function deform(p, useLength){
let mainR = 5;
v3.copy(p).normalize();
let len = p.length();
let ns = perlin.noise(v3.x * 3, v3.y * 3, v3.z * 3);
ns = Math.pow(Math.abs(ns), 0.5) * 0.25;
let r = smoothstep(0.125, 0,Math.abs(v3.x)) - ns;
p.setLength(mainR - Math.pow(r, 2)*1);
p.y *= 1 - 0.5 * smoothstep(0, -mainR, p.y);
p.y *= 0.75;
p.x *= 0.75;
p.y *= 1 - 0.125 * smoothstep(mainR * 0.25, -mainR, p.z);
p.x *= 1 - 0.125 * smoothstep(mainR * 0.25, -mainR, p.z);
if(useLength) {
p.multiplyScalar(len)
};
//p.y += 0.5;
}
//https://github.com/gre/smoothstep/blob/master/index.js
function smoothstep (min, max, value) {
var x = Math.max(0, Math.min(1, (value-min)/(max-min)));
return x*x*(3 - 2*x);
};
Also see: Tab Triggers