cssAudio - Activefile-genericCSS - ActiveGeneric - ActiveHTML - ActiveImage - ActiveJS - ActiveSVG - ActiveText - Activefile-genericVideo - ActiveLovehtmlicon-new-collectionicon-personicon-teamlog-outoctocatpop-outspinnerstartv

Pen Settings

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

You're using npm packages, so we've auto-selected Babel for you here, which we require to process imports and make it all work. If you need to use a different JavaScript preprocessor, remove the packages in the npm tab.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Use npm Packages

We can make npm packages available for you to use in your JavaScript. We use webpack to prepare them and make them available to import. We'll also process your JavaScript with Babel.

⚠️ This feature can only be used by logged in users.

Code Indentation

     

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

            
              <h1>Responsive scaling with MathJax</h1>

<p>We scale down math that's too big to fit, much like MathML's <code>overflow=scale</code>. We get a little bit of help from our markup and assume that all our (display) math sits in wrappers with <code>class="formula"</code></p>

<h1>Extract From Struik</h1>


<p>
  This procedure is simply a generalization of the method used in Sects. 1-3 and 1-4 to obtain the equations of the osculating plane and the osculating circle. Let $f(u)$ near $P(u=u_0)$ have finite derivatives $f^{(i)}(u_0)$, $i = 1, 2, \ldots, n+1$. Then
  if we take $u=u_1$ at $A$ and write $h = u_1 - u_0$, then there exists a Taylor development of $f(u)$ of the form (compare Eq. (1-5)):
</p>
<div class="formula">

  $$ f(u_1) = f(u_0) + hf'(u_0)+{h^2\over 2!}f''(u_0) + \cdots + {h^{n+1}\over (n+1)!}f^{(n+1)}(u_0) + o(h^{n+1}). $$
</div>


<p>Here, $f(u_0)=0$ since $P$ lies on $\Sigma_2$, and $h$ is of order $AP$ (see theorem Sec. 1-2); $f(u_1)$ is of order $AD$.
  <I>Hence necessary and
sufficient conditions that the surface has a contact of order $n$ at $P$
with the curve are that at $P$ the relations hold:</I>
</p>
<div class="formula">
  $$ f(u) = f'(u) = f''(u) = \cdots = f^{(n)}(u) = 0;\quad f^{(n+1)}(u) \ne 0. $$
</div>

<hr />
<p>
  The converse problem is somewhat more complicated: Find the curves which admit a given curve $C$ as involute. Such curves are called
  <I>evolutes</I> of $C$ (German:
  <I>Evolute;</I> French:
  <I>d&eacute;velopp&eacute;es</I>). Their tangents are normal to $C({\bf x})$ and we can therefore write the equation of the evolute ${\bf y}$ (Fig. 1-34):
</p>

<div class="formula">
  $$ {\bf y} = {\bf x} + a_1{\bf n} + a_2{\bf b}. $$
</div>


<p>Hence</p>
<div class="formula">
  $$ {d{\bf y}\over ds} = {\bf t}(1-a_1\kappa) + {\bf n}\left({da_1\over ds}-\tau a_2\right) + {\bf b}\left({da_2\over ds}+\tau a_1\right) $$
</div>
<p>must have the direction of $a_1{\bf n} + a_2{\bf b}$, this tangent to the evolute:</p>
<div class="formula">
$$ \kappa = 1/a, \qquad R= a_1, $$
</div>

<p>and</p>

<div class="formula">
$$ {{da_1\over ds} - \tau a_2\over a_1} = {{da_2\over ds}+\tau a_1\over a_2}, $$
</div>
<p>which can be written in the form:</p>
<div class="formula">
$$ {a_2{dR\over ds} - R{da_2\over ds} \over a_2^2 + R^2} = \tau. $$
</div> 
<p>This expression can be integrated:
</p>
<div class="formula">

  $$ \tan^{-1}{R\over a_2} = \int \tau\,ds + {\rm const}, $$
</div>
<p>or</p>
<div class="formula">
  $$ a_2 = R\left[{\rm cot}\left(\int \tau\,ds + {\rm const}\right)\right]. $$

</div>
<p>The equation of the evolute is:
</p>
<div class="formula">
  $$ {\bf y} = {\bf x} + R\left[{\bf n} + {\rm cot}\left(\int \tau\,ds + {\rm const}\right){\bf b}\right]. $$

</div>

<hr />
<p>If $P(u,v)$ and $Q(u,v)$ are two functions of $u$ and $v$ on a surface, then according to Green's theorem and the expression in Chapter 2, Eq. (3-4) for the element area:
</p>
<div class="formula">
  $$ \int_C P\,du + Q\, dv = \int\!\!\!\int_A \left({\partial Q\over \partial u} - {\partial P\over \partial v}\right) {1\over \sqrt{EG-F^2}}\,dA, $$

</div>
<p>where $dA$ is the element of area of the region $R$ enclosed by the curve $C$. With the aid of this theorem we shall evaluate
</p>
<div class="formula">
  $$ \int_C \kappa_g\,ds, $$

</div>

<p>where $\kappa_g$ is the geodesic curvature of the curve $C$. If $C$ at a point $P$ makes the angle $\theta$ with the coordinate curve $v = {\rm constant}$ and if the coordinate curves are orthogonal, then, according to Liouville's formula (1-13):
</p>
<div class="formula">
  $$ \kappa_g\,ds = d\theta + \kappa_1(\cos\theta)\,ds + \kappa_2(\sin\theta)\,ds. $$

</div>

<p>Here, $\kappa_1$ and $\kappa_2$ are the geodesic curvatures of the curves $v = {\rm constant}$ and $u = {\rm constant}$ respectively. Since
</p>
<div class="formula">
  $$ \cos\theta\,ds = \sqrt{E}\,du, \qquad \sin\theta\,ds = \sqrt{G}\,dv, $$
</div>

<p>we find by application of Green's theorem:</p>
<div class="formula">
  $$ \int_C\kappa_g\,ds = \int_C d\theta + \int\!\!\!\int_A\left({\partial\over\partial u} \left(\kappa_2\sqrt{G}\,\right) - {\partial\over \partial v}\left(\kappa_1\sqrt{E}\,\right)\right)\,du\,dv. $$

</div>

<p>
  The Gaussian curvature can be written, according to Chapter 3, Eq. (3-7),
</p>
<div class="formula">
  $$ K = -{1\over 2\sqrt{EG}} \left[{\partial\over\partial u}{G_u\over \sqrt{EG}} + {\partial\over\partial v}{E_v\over\sqrt{EG}}\right] ={1\over\sqrt{EG}}\left[ -{\partial\over\partial u} \left(\kappa_2\sqrt{G}\,\right) + {\partial\over\partial v} \left(\kappa_1\sqrt{E}\,\right)\right],
  $$

</div>
<p>so we obtain the formula</p>
<div class="formula">
  $$ \int_C\kappa_g\,ds = \int_C d\theta - \int\!\!\!\int_A K\,dA. $$
</div>

<p>The integral $\int\!\!\int_A K\,dA$ is known as the
  <I>total</I> or
  <I>integral curvature</I>, or
  <I>curvature integra</I>, of the region $R$, the name by which Gauss introduced it.
</p>
            
          
!
            
              body {max-width: 900px; border: solid; margin: auto}
            
          
!
            
              window.MathJax = {
  jax: ["input/TeX","output/CommonHTML"],
  extensions: ["tex2jax.js", "asciimath2jax.js", "mml2jax.js", "MathMenu.js", "MathZoom.js"],
  TeX: {
    extensions: ["AMSmath.js", "AMSsymbols.js", "autoload-all.js"]
  },
  tex2jax: {
    inlineMath: [
      ['$', '$'],
      ["\\(", "\\)"]
    ],
    processEscapes: true
  },
  showProcessingMessages: false,
  messageStyle: "none",
  menuSettings: { zoom: "Click" },
  AuthorInit: function() {
    MathJax.Hub.Register.StartupHook("End", function() {
            var timeout = false, // holder for timeout id
            delay = 250; // delay after event is "complete" to run callback
            var shrinkMath = function() {
              var dispFormulas = document.getElementsByClassName("formula");
              if (dispFormulas){
                // caculate relative size of indentation
                var contentTest = document.getElementsByTagName("body")[0];
                var nodesWidth = contentTest.offsetWidth;
                // if you have indentation
                var mathIndent = MathJax.Hub.config.displayIndent; //assuming px's
                var mathIndentValue = mathIndent.substring(0,mathIndent.length - 2);
                for (var i=0; i<dispFormulas.length; i++){
                  var dispFormula = dispFormulas[i];
                  var wrapper = dispFormula.getElementsByClassName("MathJax_Preview")[0].nextSibling;
                  var child = wrapper.firstChild;
                  wrapper.style.transformOrigin = "center"; //or top-left if you left-align your equations
                  var oldScale = child.style.transform;
                  var newValue = Math.min(0.80*dispFormula.offsetWidth / child.offsetWidth,1.0).toFixed(2);
                  var newScale = "scale(" + newValue + ")";
                  if(!(newScale === oldScale)){
                    wrapper.style.transform = newScale;
                    wrapper.style["margin-left"]= Math.pow(newValue,4)*mathIndentValue + "px";
                    var wrapperStyle = window.getComputedStyle(wrapper);
                    var wrapperHeight = parseFloat(wrapperStyle.height);
                    wrapper.style.height = "" + (wrapperHeight * newValue) + "px";
                    if(newValue === "1.00"){
                      wrapper.style.cursor = "";
                      wrapper.style.height = "";
                    }
                    else {
                      wrapper.style.cursor = "zoom-in";
                    }
                  }

                }
            }
            };
            shrinkMath();
            window.addEventListener('resize', function() {
              clearTimeout(timeout);
              timeout = setTimeout(shrinkMath, delay);
            });
          });
  }
};

(function(d, script) {
  script = d.createElement('script');
  script.type = 'text/javascript';
  script.async = true;
  script.onload = function() {
    // remote script has loaded
  };
  script.src = 'https://cdn.mathjax.org/mathjax/latest/MathJax.js';
  d.getElementsByTagName('head')[0].appendChild(script);
}(document));
            
          
!
999px
🕑 One or more of the npm packages you are using needs to be built. You're the first person to ever need it! We're building it right now and your preview will start updating again when it's ready.
Loading ..................

Console