HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<canvas id="canvas" />
<script type="x-shader" id="shader_vertex">
#define PI 3.1415926535897932384626433832795
float TAU = PI * 2.0;
uniform float u_time;
uniform float u_width;
uniform float u_bump_frequency;
uniform float u_bump_scale;
varying vec3 v_pos;
varying vec3 v_orig_pos;
varying vec3 v_view_pos;
varying float v_bumps;
const float bump_iterations = 7.0;
void main() {
vec4 model_position = modelMatrix * vec4(position, 1.0);
vec3 pos = position;
pos.xz *= u_width - (0.05 + smoothstep(0.0, -0.3, position.y) * -0.3) * u_width * 0.3;
pos.xz *= 1.0 - sin((pos.y + u_time * 0.2 * TAU) * 2.0) * 0.2;
pos.y *= 1.0 - sin((pos.y + (u_time + 0.3) * 0.2 * TAU) * 2.0) * .6;
float bumps = 0.0;
for (float i = 1.0; i < bump_iterations; i += 1.0) {
float bump_scalar = (pos.y * 0.5 - 1.0) * u_bump_frequency * pow(i, 1.4);
float bump_noise = snoise4(vec4(
pos.x * bump_scalar,
pos.y * bump_scalar + u_time * 0.1,
pos.z * bump_scalar,
u_time * 0.1 * pow(i, 1.0)
));
bump_noise = abs(bump_noise);
bumps += bump_noise * u_bump_scale / i * sin(((pos.y + u_time * 0.2 * TAU) - PI * .5) * 2.0);
}
pos *= 1.0 + bumps;
pos.xz *= 1.0 - smoothstep(0.2, 0.1, position.y) * 0.35;
model_position.xyz = pos;
vec4 view_position = viewMatrix * model_position;
vec4 projected_position = projectionMatrix * view_position;
gl_Position = projected_position;
v_pos = vec3(model_position.xyz);
v_view_pos = vec3(view_position.xyz);
v_bumps = bumps;
v_orig_pos = position;
}
</script>
<script type="x-shader" id="shader_fragment">
uniform float u_time;
varying vec3 v_pos;
varying vec3 v_view_pos;
varying vec3 v_orig_pos;
varying float v_bumps;
void main() {
vec3 color_dark = vec3(0, 0, 0);
vec3 color_light = vec3(240, 230, 243);
vec3 color = mix(color_dark, color_light, v_bumps * 0.002);
color = mix(color, color_light, (1.5 + v_pos.y * 0.5) * 0.0008);
float noise = snoise4(vec4(
v_pos.x + v_orig_pos.y * 32.0,
v_orig_pos.y * v_pos.y * 0.1,
v_pos.z + v_orig_pos.y * 32.0,
u_time
));
noise = noise * 0.25 * smoothstep(0.1, 0.2, v_orig_pos.y);
color -= noise;
color.r *= 1.0 + distance(v_pos.xyz, vec3(0.0,v_orig_pos.y,0.0)) * 0.5;
color.b += noise * v_pos.y;
color.r *= 1.3;
color.g *= v_pos.y + 0.5;
color.b *= v_pos.y + 0.5;
color.b += (1.0 - color.r) * 0.4;
color *= .9;
gl_FragColor = vec4(color, 1.0);
}
</script>
<script type="x-shader" id="shader_simplexNoise4D">
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : ijm
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
float mod289(float x) {
return x - floor(x * (1.0 / 289.0)) * 289.0; }
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
float permute(float x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float taylorInvSqrt(float r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec4 grad4(float j, vec4 ip)
{
const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
vec4 p,s;
p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
s = vec4(lessThan(p, vec4(0.0)));
p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www;
return p;
}
// (sqrt(5) - 1)/4 = F4, used once below
#define F4 0.309016994374947451
float snoise4(vec4 v)
{
const vec4 C = vec4( 0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// First corner
vec4 i = floor(v + dot(v, vec4(F4)) );
vec4 x0 = v - i + dot(i, C.xxxx);
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
vec4 i0;
vec3 isX = step( x0.yzw, x0.xxx );
vec3 isYZ = step( x0.zww, x0.yyz );
// i0.x = dot( isX, vec3( 1.0 ) );
i0.x = isX.x + isX.y + isX.z;
i0.yzw = 1.0 - isX;
// i0.y += dot( isYZ.xy, vec2( 1.0 ) );
i0.y += isYZ.x + isYZ.y;
i0.zw += 1.0 - isYZ.xy;
i0.z += isYZ.z;
i0.w += 1.0 - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
vec4 i3 = clamp( i0, 0.0, 1.0 );
vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 1.0 * C.xxxx
// x2 = x0 - i2 + 2.0 * C.xxxx
// x3 = x0 - i3 + 3.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
vec4 x1 = x0 - i1 + C.xxxx;
vec4 x2 = x0 - i2 + C.yyyy;
vec4 x3 = x0 - i3 + C.zzzz;
vec4 x4 = x0 + C.wwww;
// Permutations
i = mod289(i);
float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
vec4 j1 = permute( permute( permute( permute (
i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
+ i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
+ i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
+ i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;
vec4 p0 = grad4(j0, ip);
vec4 p1 = grad4(j1.x, ip);
vec4 p2 = grad4(j1.y, ip);
vec4 p3 = grad4(j1.z, ip);
vec4 p4 = grad4(j1.w, ip);
// Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= taylorInvSqrt(dot(p4,p4));
// Mix contributions from the five corners
vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4) ), 0.0);
m0 = m0 * m0;
m1 = m1 * m1;
return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
+ dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;
}
</script>
html, body {
margin:0;
overflow:hidden;
}
#canvas {
display:block;
width:100vw;
height:100vh;
}
import * as THREE from "https://cdn.skypack.dev/three@0.133.1";
import { OrbitControls } from "https://cdn.skypack.dev/three@0.133.1/examples/jsm/controls/OrbitControls";
const getAspectRatio = () => canvas.offsetWidth / canvas.offsetHeight
const renderer = new THREE.WebGLRenderer({
antialias: true,
powerPreference: 'high-performance',
canvas
});
const scene = new THREE.Scene();
scene.background = new THREE.Color(0x331144)
const camera = new THREE.PerspectiveCamera(45, getAspectRatio(), 0.01, 1000);
camera.position.set(0,3,8)
camera.lookAt(0,0,0)
scene.add(camera);
const controls = new OrbitControls(camera, canvas)
const geometry = new THREE.OctahedronGeometry(1, 32)
geometry.rotateX(Math.PI * -.5)
const material = new THREE.ShaderMaterial({
vertexShader: shader_simplexNoise4D.textContent + shader_vertex.textContent,
fragmentShader: shader_simplexNoise4D.textContent + shader_fragment.textContent,
uniforms: {
u_time: { value: 0.0 },
u_width: { value: 1.3 },
u_bump_frequency: { value: 0.3 },
u_bump_scale: { value: 0.4 }
}
})
const mesh = new THREE.Mesh(geometry, material)
mesh.position.y = .15
scene.add(mesh)
const clock = new THREE.Clock()
clock.start()
const loop = () => {
const delta = clock.getDelta()
material.uniforms.u_time.value += delta
renderer.render(scene, camera)
requestAnimationFrame(loop)
}
loop()
const update_size = () => {
renderer.setSize(canvas.offsetWidth, canvas.offsetHeight, false)
camera.aspect = getAspectRatio()
camera.updateProjectionMatrix()
}
window.addEventListener('resize', update_size)
update_size()
Also see: Tab Triggers