Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using it's URL and the proper URL extention.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div class="canvas-wrapper"></div>
<div id="fullpage" class="sections">
  <section class="section active">
    <p>Section Start</p>
	</section>
	<section class="section">
		<p>Section 1</p>
	</section>
	<section class="section">
		<p>Section 2</p>
	</section>
	<section class="section">
		<p>Section 3</p>
	</section>
	<section class="section">
		<p>Section 4</p>
	</section>
	<section class="section">
		<p>Section 5</p>
	</section>
</div>

<script type="x-shader/x-vertex" id="vertexShader">
  //
  // GLSL textureless classic 3D noise "cnoise",
  // with an RSL-style periodic variant "pnoise".
  // Author:  Stefan Gustavson (stefan.gustavson@liu.se)
  // Version: 2011-10-11
  //
  // Many thanks to Ian McEwan of Ashima Arts for the
  // ideas for permutation and gradient selection.
  //
  // Copyright (c) 2011 Stefan Gustavson. All rights reserved.
  // Distributed under the MIT license. See LICENSE file.
  // https://github.com/stegu/webgl-noise
  //

  vec3 mod289(vec3 x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
  }

  vec4 mod289(vec4 x) {
    return x - floor(x * (1.0 / 289.0)) * 289.0;
  }

  vec4 permute(vec4 x) {
    return mod289(((x*34.0)+10.0)*x);
  }

  vec4 taylorInvSqrt(vec4 r) {
    return 1.79284291400159 - 0.85373472095314 * r;
  }

  vec3 fade(vec3 t) {
    return t*t*t*(t*(t*6.0-15.0)+10.0);
  }

  // Classic Perlin noise
  float cnoise(vec3 P) {
    vec3 Pi0 = floor(P); // Integer part for indexing
    vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec3 Pf0 = fract(P); // Fractional part for interpolation
    vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);

    vec4 gx0 = ixy0 * (1.0 / 7.0);
    vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);

    vec4 gx1 = ixy1 * (1.0 / 7.0);
    vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);

    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;

    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
    float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
    float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
    float n111 = dot(g111, Pf1);

    vec3 fade_xyz = fade(Pf0);
    vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
    vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
    float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); 
    return 2.2 * n_xyz;
  }

  // Classic Perlin noise, periodic variant
  float pnoise(vec3 P, vec3 rep) {
    vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
    vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
    Pi0 = mod289(Pi0);
    Pi1 = mod289(Pi1);
    vec3 Pf0 = fract(P); // Fractional part for interpolation
    vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);

    vec4 gx0 = ixy0 * (1.0 / 7.0);
    vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);

    vec4 gx1 = ixy1 * (1.0 / 7.0);
    vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);

    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;

    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
    float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
    float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
    float n111 = dot(g111, Pf1);

    vec3 fade_xyz = fade(Pf0);
    vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
    vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
    float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); 
    return 2.2 * n_xyz;
  }


  // https://github.com/dmnsgn/glsl-rotate
  mat3 rotation3dY(float angle) {
    float s = sin(angle);
    float c = cos(angle);

    return mat3(
      c, 0.0, -s,
      0.0, 1.0, 0.0,
      s, 0.0, c
    );
  }

  vec3 rotateY(vec3 v, float angle) {
    return rotation3dY(angle) * v;
  }

  varying float vDistort;

  uniform float uTime;
  uniform float uSpeed;
  uniform float uNoiseDensity;
  uniform float uNoiseStrength;
  uniform float uFrequency;
  uniform float uAmplitude;

  void main() {

    float t = uTime * uSpeed;

    float distortion = pnoise((normal + t) * uNoiseDensity, vec3(10.0)) * uNoiseStrength;

    // Disturb each vertex along the direction of its normal
    vec3 pos = position + (normal * distortion);

    // Create a sine wave from top to bottom of the sphere
    // To increase the amount of waves, we'll use uFrequency
    // To make the waves bigger we'll use uAmplitude
    float angle = sin(uv.y * uFrequency /*+ t*/) * uAmplitude;
    pos = rotateY(pos, angle); 

    vDistort = distortion;

    gl_Position = projectionMatrix * modelViewMatrix * vec4(pos, 1.0);

  }
</script>

<script type="x-shader/x-vertex" id="fragmentShader">
  varying float vDistort;

  uniform float uRed;
  uniform float uBlue;

  vec3 cosPalette(float t, vec3 a, vec3 b, vec3 c, vec3 d) {
    return a + b * cos(6.28318 * (c * t + d));
  }

  void main() {

    float distort = vDistort * 1.; // * X.X intensity

    vec3 brightness = vec3(uRed, 0.3, uBlue);
    vec3 contrast = vec3(0.1, 0.2, 0.1);
    vec3 oscilation = vec3(1.2, 1.2, 1.2);
    vec3 phase = vec3(0.0, 0.0, 0.0);

    // Pass the distortion as input of cospalette
    vec3 color = cosPalette(distort, brightness, contrast, oscilation, phase);

    gl_FragColor = vec4(color, 1.0);

  }
</script>
              
            
!

CSS

              
                *,
*::after,
*::before {
	box-sizing: border-box;
}
* {
  margin: 0;
  padding: 0;
}
html,
body {
  font-family: Arial, Helvetica, sans-serif;
}
.canvas-wrapper {
  position: fixed;
  z-index: -1;
  top: 0;
  bottom: 0;
  left: 0;
  right: 0;
  outline: none;
  background: #2e2e2e;
}
canvas.webgl {
  pointer-events: none;
	width: 100%;
}
.section {
  width: 100%;
  height: 100vh;
}
.section p {
  margin-left: 20vw;
  margin-top: 70vh;
  font-size: 60px;
  font-weight: bold;
  color: #1f1f1f;
}
              
            
!

JS

              
                import * as THREE from 'https://cdn.skypack.dev/three@0.124.0'
import GSAP from 'https://cdn.skypack.dev/gsap'
import fullpageJs from 'https://cdn.skypack.dev/fullpage.js';

class BlobAnimation {
  constructor() {

    this.elements = {
      scrollContent: document.querySelector('.sections')
    }

    this.viewport = {
      width: window.innerWidth,
      height: window.innerHeight,
    }

    this.scroll = {
      limit: 0.1,
      hard: 0,
      normalized: 0, 
      running: false
    }

    this.settings = {
      uTime: {
        type: 'f',
        value: 0.0
      },
      uSpeed: {
        start: .1,
        end: .18
      },
      // vertex
      uNoiseDensity: {
        start: 1.2,
        end: 2.
      },
      uNoiseStrength: {
        start: .3,
        end: .5
      },
      uFrequency: {
        start: .2,
        end: 4.
      },
      uAmplitude: {
        start: .15,
        end: 2.2
      },
      // fragment
      uRed: {
        start: 1.,
        end: .2
      },
      uBlue: {
        start: .2,
        end: .9
      }
    }

    this.scene = new THREE.Scene()
    this.scene.background = new THREE.Color( 0xffffff );

    this.renderer = new THREE.WebGLRenderer({ 
      antialias: true, 
      alpha: true 
    })

    this.canvas = this.renderer.domElement

    this.camera = new THREE.PerspectiveCamera( 20, this.viewport.width / this.viewport.height, .1, 1000 )

    this.clock = new THREE.Clock()

    GSAP.defaults({
      ease: 'power2',
      duration: 2,
      overwrite: true,
      reversed: false
    })
    
    this.updateScrollAnimations = this.updateScrollAnimations.bind(this)
    this.update = this.update.bind(this)
        
    this.init()
  }
  
  init() {
    this.addCanvas()
    this.addCamera()
    this.addMesh()
    this.addFullpageHandler() 
    this.addEventListeners()
    this.onResize()
    this.update()
  }

  // FULLPAGE SCROLL HANDLER
  // init for autoscrolling behavior
  addFullpageHandler() {
    new fullpageJs('#fullpage', {	
      licenseKey: 'XXXXXXXX-XXXXXXXX-XXXXXXXX-XXXXXXXX', 
      scrollBar: true,
      autoScrolling: true
    })
  }

  // STAGE
  addCanvas() {
    this.canvas.classList.add('webgl')
    document.querySelector('.canvas-wrapper').appendChild(this.canvas)
  }

  addCamera() {
    this.camera.position.set(0, 0, 10)
    this.scene.add(this.camera)
  }

  // OBJECT
  addMesh() {
    this.geometry = new THREE.IcosahedronGeometry(1, 64)
    
    this.material = new THREE.ShaderMaterial({
      vertexShader: document.getElementById( 'vertexShader' ).textContent,
    fragmentShader: document.getElementById( 'fragmentShader' ).textContent,
      uniforms: {
        uTime: { 
          type: this.settings.uTime.type,
          value: this.settings.uTime.value,
        },
        uSpeed: { value: this.settings.uSpeed.start },
        uNoiseDensity: { value: this.settings.uNoiseDensity.start },
        uNoiseStrength: { value: this.settings.uNoiseStrength.start },
        uFrequency: { value: this.settings.uFrequency.start },
        uAmplitude: { value: this.settings.uAmplitude.start },
        uRed: { value: this.settings.uRed.start },
        uBlue: { value: this.settings.uBlue.start }
      }
    })
    
    this.mesh = new THREE.Mesh(this.geometry, this.material)
    
    this.scene.add(this.mesh)
  }

  // SCROLL BASED ANIMATIONS
  updateScrollAnimations() {
    this.scroll.running = false

    this.scroll.limit = this.elements.scrollContent.clientHeight - this.viewport.height
    this.scroll.hard = window.scrollY
    this.scroll.hard = GSAP.utils.clamp(0, this.scroll.limit, this.scroll.hard)

    /*GSAP.to(this.mesh.rotation, {
      x: this.scroll.normalized * Math.PI
    })*/

    // iterate through noise-settings
    // calculate new settings value with scroll value depending on scroll position
    // write to mesh.material.uniforms
    for (const key in this.settings) {
      if (this.settings[key].start !== this.settings[key].end) {
        if ( key != 'uTime' || key != 'uSpeed' ) { // tried to exclude those two settings, but didn't change anything
          GSAP.to(this.mesh.material.uniforms[key], {
            value: this.settings[key].start + this.scroll.normalized * (this.settings[key].end - this.settings[key].start)
          })
        }
      }
    }
    
  }

  // EVENTS
  addEventListeners() {
    document.addEventListener('scroll', this.onScroll.bind(this))
    window.addEventListener('resize', this.onResize.bind(this))
  }

  onScroll() {
    //sets a value between 0 and 1, depends on how far it's scrolled
    this.scroll.normalized = (this.scroll.hard / this.scroll.limit).toFixed(1)

    if (!this.scroll.running) {
      window.requestAnimationFrame(this.updateScrollAnimations)
      this.scroll.running = true
    }
  }

  onResize() {
    this.viewport = {
      width: window.innerWidth,
      height: window.innerHeight
    }

    if (this.viewport.width < this.viewport.height) {
      this.mesh.scale.set(.7, .7, .7)
    } else {
      this.mesh.scale.set(1, 1, 1)
    }

    this.camera.aspect = this.viewport.width / this.viewport.height
    this.camera.updateProjectionMatrix()
    
    this.renderer.setSize(this.viewport.width, this.viewport.height)
    this.renderer.setPixelRatio(Math.min(window.devicePixelRatio, 1.5))
  }

  // LOOP
  update() {
    const elapsedTime = this.clock.getElapsedTime()

    //this.mesh.rotation.y = elapsedTime * .15
    //this.mesh.rotation.z = elapsedTime * -.1

    this.mesh.material.uniforms['uTime'].value = elapsedTime

    /*for (const key in this.settings) {
      if (this.settings[key].start !== this.settings[key].end) {
        //if ( key != 'uTime' || key != 'uSpeed' ) {
          GSAP.to(this.mesh.material.uniforms[key], {
            value: this.settings[key].start + this.scroll.normalized * (this.settings[key].end - this.settings[key].start)
          })
        //}
      }
    }*/

    this.render()
    window.requestAnimationFrame(this.update)
  }

  // RENDER
  render() {
    this.renderer.render(this.scene, this.camera)
  }  
}

new BlobAnimation()

              
            
!
999px

Console