HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URL's added here will be added as <link>
s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
If the stylesheet you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<!-- Interactive Planet Toy - Stefan Weck
Launch new planets by clicking and dragging. You can see the predicted path of your new planet to see if it will collide with any other planets. Once a smaller planet hits a bigger planet it will disappear. Planets of the same size can't hit each other.
Every planet will apply a gravitational pull on other smaller planets. The bigger the planet, the stronger the gravitational forces!
Tip: You can turn on pauseWhileAiming in the dat.gui window to pause the simulation, this allows you to do some very specific planet launching. Have fun! -->
<canvas id="canvas">Your browser doesn't support canvas</canvas>
html, body{
margin:0;
padding:0;
background-color:#212121;
}
#canvas{
margin:0 auto;
display:block;
}
/**
* Constants
*/
const TWO_PI = Math.PI * 2;
const ALLOWED_CHARACTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789";
/**
* Simple settings objects so we can easily mutate these values using dat.gui
* @type {{spawnMass: number, pauseWhileAiming: boolean, amountOfPredictions: number}}
*/
const settings = {
spawnMass: 25,
pauseWhileAiming: false,
amountOfPredictions: 200
};
/**
* Application Class
* The heart of the application and responsible for initializing all objects and updating/rendering them
*/
class Application {
/**
* Application constructor
*/
constructor() {
this.canvas = document.getElementById("canvas");
this.context = this.canvas.getContext("2d");
this.width = this.canvas.width = window.innerWidth;
this.height = this.canvas.height = window.innerHeight;
this.center = {
x: this.width / 2,
y: this.height / 2
};
this.solarSystem = new SolarSystem();
this.planetLauncher = new PlanetLauncher(this.canvas, this.solarSystem);
//Resize listener for the canvas to fill the browser window dynamically
window.addEventListener('resize', () => this.resizeCanvas(), false);
}
/**
* Simple resize function. Reinitializing everything on the canvas while changing the width/height
* @return {void}
*/
resizeCanvas() {
//Recalculate the width and height of the canvas and thus the center of the canvas as well
this.width = this.canvas.width = window.innerWidth;
this.height = this.canvas.height = window.innerHeight;
this.center = {
x: this.width / 2,
y: this.height / 2
};
this.reset();
}
/**
* Updates the application and every child of the application
* @return {void}
*/
update() {
if (settings.pauseWhileAiming === false) {
this.solarSystem.update();
} else if (settings.pauseWhileAiming === true && this.planetLauncher.isMouseDown === false) {
this.solarSystem.update();
}
this.planetLauncher.update();
}
/**
* Renders the application and every child of the application
* @return {void}
*/
render() {
//Clear the entire canvas to make it empty for the new render loop
this.context.clearRect(0, 0, this.width, this.height);
this.solarSystem.render(this.context);
this.planetLauncher.render(this.context);
}
/**
* Update and render the application at least 60 times a second
* @return {void}
*/
loop() {
this.update();
this.render();
window.requestAnimationFrame(() => this.loop());
}
/**
* Throw all planets away and initialize a whole new array of planets
* @return {void}
*/
reset() {
this.solarSystem.planets = [];
this.solarSystem.initializePlanets(this.center);
}
}
/**
* SolarSystem class
* Is responsible for maintaining and updating all of it's planets
*/
class SolarSystem {
/**
* SolarSystem constructor
*/
constructor() {
this.planets = [];
}
/**
* Initialize the planets container by filling it with Planet objects
* @param center - An object containing the x and y variables that describe the center of the canvas
* @return {void}
*/
initializePlanets(center) {
this.planets.push(new Planet(center.x, center.y, 0, 0, 200));
this.planets.push(new Planet(center.x, center.y - 150, 1.1, 0, 25));
this.planets.push(new Planet(center.x + 70, center.y - 90, 1.45, Math.PI, 25));
this.planets.push(new Planet(center.x - 180, center.y + 160, 1, Math.PI / 1.4, 25));
this.planets.push(new Planet(center.x - 150, center.y + 100, 1.1, Math.PI * 2.4, 75));
}
/**
* Updates the application and every child of the application
* @return {void}
*/
update() {
//Keep an array of all destroyed planets, because we don't want to mutate the planets array while calculating all values
let destroyedPlanets = [];
for (let i = 0; i < this.planets.length; i++) {
//If the planet collides with another planet, don't bother continuing the gravity calculations for this planet
if (SolarSystem.collidesWithAnotherPlanet(this.planets[i], this.planets) === true) {
destroyedPlanets.push(i);
continue;
}
//Calculate the total gravitational pull from all the other planets in the solar system
let gravitationalPull = SolarSystem.gravitationalPullFromOtherPlanets(this.planets[i], this.planets);
//Update the current planet by changing it's position based on it's velocity
this.planets[i].accelerate(gravitationalPull);
this.planets[i].update();
}
//Remove all planets that should be destroyed, because they've hit something during this update loop
for (let i = 0; i < destroyedPlanets.length; i++) {
this.planets.splice(destroyedPlanets[i], 1);
}
}
/**
* Renders the SolarSystem and every child of the application
* @param context - The context of the canvas that the application is being rendered on
* @return {void}
*/
render(context) {
for (let i = 0; i < this.planets.length; i++) {
this.planets[i].render(context);
}
}
/**
* Check whether one planet collides with another planet
* @param {Planet} planet
* @param {Array} planets
* @return {boolean}
*/
static collidesWithAnotherPlanet(planet, planets) {
for (let i = 0; i < planets.length; i++) {
//We don't want to check for collision with the same planet. A planet can't hit itself
if (planet.name === planets[i].name) {
continue;
}
//If the other planet is bigger than the current planet, don't bother checking for collisions
if (planets[i].mass <= planet.mass) {
continue;
}
//Check if the current planet hits the other planet
if (SolarSystem.hasCollisionBetween(planet, planets[i])) {
return true;
}
}
return false;
}
/**
* Calculate the gravitational pull on one planet based on distance to other planets
* @param {Planet} planet
* @param {Array} planets
* @returns {Vector2D}
*/
static gravitationalPullFromOtherPlanets(planet, planets) {
let totalGravitationalPull = new Vector2D(0, 0);
for (let i = 0; i < planets.length; i++) {
//We don't want to check for gravitational pull on the same planet, neither should a planet collide with itself
if (planet.name === planets[i].name) {
continue;
}
//If the other planet's mass is smaller than the current planets mass, don't bother to check for gravity changes.
//A bigger planet shouldn't be affected by a very small planet, as this isn't a scientifically accurate representation of the galaxy.
if (planets[i].mass <= planet.mass) {
continue;
}
//Calculate the gravitationalPull on the current planet
totalGravitationalPull.addTo(SolarSystem.gravitationalPull(planet, planets[i]));
}
return totalGravitationalPull;
}
/**
* If the current planet hits a bigger planet, it should be destroyed by impact
* I calculate this by doing a simple check on the distance and the radii of both planets
* @param {Planet} currentPlanet
* @param {Planet} otherPlanet
*/
static hasCollisionBetween(currentPlanet, otherPlanet) {
let distanceTo = SolarSystem.distanceBetween(currentPlanet, otherPlanet);
//If the current planet hits a bigger planet, it should be destroyed by impact
//I calculate this by doing a simple check on the distance and the radii of both planets
return (distanceTo <= (otherPlanet.radius + currentPlanet.radius));
}
/**
* Calculate the gravitational pull on the current planet based on the other planet's mass and distance between the two planets
* @param {Planet} currentPlanet
* @param {Planet} otherPlanet
*/
static gravitationalPull(currentPlanet, otherPlanet) {
//Calculate the angle and distance between the current planet and the current other planet
let angle = SolarSystem.angleBetween(currentPlanet, otherPlanet);
let distanceTo = SolarSystem.distanceBetween(currentPlanet, otherPlanet);
//Create a new gravity Vector2D that will affect the current planet's velocity
//Set the angle and length of the gravity vector. The length is based on the mass of the other planet and the distance between the current planet and that planet.
let gravity = new Vector2D(0, 0);
gravity.setLength(otherPlanet.mass / (distanceTo * distanceTo));
gravity.setAngle(angle);
//Return the gravitational pull that is applied the current planet by the other planet
return gravity;
}
/**
* Calculate the distance between the current planet and the current other planet
* @param {Planet} currentPlanet
* @param {Planet} otherPlanet
* @returns {number}
*/
static distanceBetween(currentPlanet, otherPlanet) {
//Calculate the difference in position for the horizontal and the vertical axis
let dx = otherPlanet.position.getX() - currentPlanet.position.getX();
let dy = otherPlanet.position.getY() - currentPlanet.position.getY();
//Calculate the distance between the current planet and the current other planet
return Math.sqrt(dx * dx + dy * dy);
}
/**
* Calculate the angle between the current planet and the current other planet
* @param {Planet} currentPlanet
* @param {Planet} otherPlanet
* @returns {number}
*/
static angleBetween(currentPlanet, otherPlanet) {
//Calculate the difference in position for the horizontal and the vertical axis
let dx = otherPlanet.position.getX() - currentPlanet.position.getX();
let dy = otherPlanet.position.getY() - currentPlanet.position.getY();
return Math.atan2(dy, dx);
}
}
/**
* Planet Class
*/
class Planet {
/**
* Planet constructor
* @param {number} x - The horizontal position of the planet
* @param {number} y - The vertical position of the planet
* @param {number} speed - The initial speed of the planet
* @param {number} direction - The initial direction in which the planet moves
* @param {number} mass - The mass and thus size of the planet
*/
constructor(x, y, speed, direction, mass) {
this.name = Utils.randomString(10);
this.position = new Vector2D(x, y);
this.velocity = new Vector2D(0, 0);
this.velocity.setLength(speed);
this.velocity.setAngle(direction);
this.mass = mass;
this.radius = mass / 5;
this.sunlitRadius = mass / 6;
this.radialDifference = this.radius - this.sunlitRadius;
this.color = Utils.getRandomInt(0, 360);
}
/**
* Update the planet by changing it's position based on it's velocity
* @return {void}
*/
update() {
this.position.addTo(this.velocity);
}
/**
* Renders the planet
* @param context - The context of the canvas that the application is being rendered on
* @return {void}
*/
render(context) {
//Draw the unlit part of the planet
context.fillStyle = 'hsla(' + this.color + ', 70%, 51%, 1)';
context.beginPath();
context.arc(this.position.getX(), this.position.getY(), this.radius, 0, TWO_PI);
context.fill();
//Draw the lit part of the planet
context.fillStyle = 'hsla(' + this.color + ', 100%, 63%, 1)';
context.beginPath();
context.arc(this.position.getX() - (this.radialDifference / 2), this.position.getY() - (this.radialDifference / 2), this.sunlitRadius, 0, TWO_PI);
context.fill();
}
/**
* Add a Vector2D to the current planet's velocity
* @param {Vector2D} acceleration
* @return {void}
*/
accelerate(acceleration) {
this.velocity.addTo(acceleration);
}
}
/**
* PlanetLauncher class
* Is responsible for the user interaction and spawning new planets
*/
class PlanetLauncher {
/**
* PlanetLauncher constructor
*/
constructor(canvas, solarSystem) {
this.solarSystem = solarSystem;
//Set an initial mouse position that is certainly off screen
this.mousePosition = {
x: -100,
y: -100
};
this.isMouseDown = false;
this.mouseDownPosition = null;
this.pathLocations = [];
//Attach all event listeners needed for the PlanetLauncher
window.addEventListener('mousemove', (e) => this.mouseMove(e), false);
canvas.addEventListener('mousedown', (e) => this.mouseDown(e), false);
canvas.addEventListener('mouseup', (e) => this.mouseUp(e), false);
canvas.addEventListener("touchstart", (e) => this.touchStart(e), false);
canvas.addEventListener("touchend", (e) => this.touchEnd(e), false);
canvas.addEventListener("touchmove", (e) => this.touchMove(e), false);
}
/**
* Checks whether the user holds his mouse down (or touches the screen). If so, initialises the path predictions so they can be rendered
* @return {void}
*/
update() {
//If the user isn't holding it's mouse down we don't have to bother predicting the planets positions
if (this.isMouseDown === false) {
return;
}
//Define the pathLocations array which will hold all the future positions for each planet
this.pathLocations = [];
//Calculate the difference in position for the horizontal and the vertical axis
let dx = this.mouseDownPosition.x - this.mousePosition.x;
let dy = this.mouseDownPosition.y - this.mousePosition.y;
//Create a temporary planet object that we can insert in the solar system to perform our calculations
this.solarSystem.planets.push(new Planet(
this.mouseDownPosition.x,
this.mouseDownPosition.y,
Math.sqrt(dx * dx + dy * dy) / 100,
Math.atan2(dy, dx),
settings.spawnMass
));
//Define the positions and velocities array so we can restore these values later on on the planets
let positions = [];
let velocities = [];
//Loop through each planet and backup their position and velocity
for (let i = 0; i < this.solarSystem.planets.length; i++) {
positions[i] = this.solarSystem.planets[i].position.add(new Vector2D(0, 0));
velocities[i] = this.solarSystem.planets[i].velocity.add(new Vector2D(0, 0));
}
//Keep an array of all destroyed planets, because we don't want to mutate the planets array while calculating all values
let destroyedPlanets = [];
//Loop as many times as we wan't to predict the future path of our planets
for (let c = 0; c < settings.amountOfPredictions; c++) {
//For every check we have to loop through each planet and check them against the other planets
for (let i = 0; i < this.solarSystem.planets.length; i++) {
//Make sure the pathLocations array is always initialized with a new empty array
//because we are going to push predicted locations in a separate array for each planet
if (typeof this.pathLocations[i] === 'undefined') {
this.pathLocations[i] = [];
}
//If this planet is already predicted to be destroyed by a previous run, don't bother checking again
if (destroyedPlanets.indexOf(i) !== -1) {
continue;
}
//If the planet collides with another planet, don't bother continuing the gravity calculations for this planet
if (SolarSystem.collidesWithAnotherPlanet(this.solarSystem.planets[i], this.solarSystem.planets) === true) {
destroyedPlanets.push(i);
continue;
}
//Calculate the total gravitational pull from all the other planets in the solar system
let gravitationalPull = SolarSystem.gravitationalPullFromOtherPlanets(this.solarSystem.planets[i], this.solarSystem.planets);
//Update the current planet by changing it's position based on it's velocity
this.solarSystem.planets[i].accelerate(gravitationalPull);
this.solarSystem.planets[i].update();
//Store the newly predicted position in an array for this specific planet, so we can render it in the render function
this.pathLocations[i].push({x: this.solarSystem.planets[i].position.getX(), y: this.solarSystem.planets[i].position.getY(), color: this.solarSystem.planets[i].color});
}
}
//Restore the original positions and velocities of each planet
for (let i = 0; i < this.solarSystem.planets.length; i++) {
this.solarSystem.planets[i].position = positions[i];
this.solarSystem.planets[i].velocity = velocities[i];
}
//Remove our temporary planet from the solar system
this.solarSystem.planets.splice(this.solarSystem.planets.length - 1, 1);
}
/**
* Renders the application and every child of the application
* @param context - The context of the canvas that the application is being rendered on
* @return {void}
*/
render(context) {
if (this.isMouseDown == false) {
context.strokeStyle = 'hsla(0, 100%, 100%, 0.5)';
context.beginPath();
context.arc(this.mousePosition.x, this.mousePosition.y, settings.spawnMass / 5, 0, TWO_PI);
context.stroke();
} else {
context.strokeStyle = 'hsla(0, 100%, 100%, 1)';
context.beginPath();
context.arc(this.mouseDownPosition.x, this.mouseDownPosition.y, settings.spawnMass / 5, 0, TWO_PI);
context.stroke();
context.beginPath();
context.moveTo(this.mousePosition.x, this.mousePosition.y);
context.lineTo(this.mouseDownPosition.x, this.mouseDownPosition.y);
context.closePath();
context.stroke();
for (let i = 0; i < this.pathLocations.length; i++) {
for (let j = 1; j < this.pathLocations[i].length; j += 1) {
if (i === this.pathLocations.length - 1) {
context.strokeStyle = 'hsla(0, 100%, 100%, 0.5)';
context.lineWidth = 3;
} else {
context.strokeStyle = 'hsla(' + this.pathLocations[i][j].color + ', 100%, 63%, 0.2)';
context.lineWidth = 1;
}
context.beginPath();
context.moveTo(this.pathLocations[i][j - 1].x, this.pathLocations[i][j - 1].y);
context.lineTo(this.pathLocations[i][j].x, this.pathLocations[i][j].y);
context.closePath();
context.stroke();
}
if(this.pathLocations[i].length < settings.amountOfPredictions && this.pathLocations[i].length > 0){
context.beginPath();
context.moveTo(this.pathLocations[i][this.pathLocations[i].length - 1].x - 5, this.pathLocations[i][this.pathLocations[i].length - 1].y - 5);
context.lineTo(this.pathLocations[i][this.pathLocations[i].length - 1].x + 5, this.pathLocations[i][this.pathLocations[i].length - 1].y + 5);
context.closePath();
context.stroke();
context.beginPath();
context.moveTo(this.pathLocations[i][this.pathLocations[i].length - 1].x + 5, this.pathLocations[i][this.pathLocations[i].length - 1].y - 5);
context.lineTo(this.pathLocations[i][this.pathLocations[i].length - 1].x - 5, this.pathLocations[i][this.pathLocations[i].length - 1].y + 5);
context.closePath();
context.stroke();
}
}
}
}
/**
* @param event - The browsers touchStart event object
* @return {void}
*/
touchStart(event) {
//Keep the browser from continuing to process the touch event (this also prevents a mouse event from also being delivered)
event.preventDefault();
if (this.isMouseDown) {
return;
}
this.isMouseDown = true;
this.mousePosition = {
x: event.touches[0].clientX,
y: event.touches[0].clientY
};
this.mouseDownPosition = {
x: event.touches[0].clientX,
y: event.touches[0].clientY
};
}
/**
* @param event - The browsers touchMove event object
* @return {void}
*/
touchMove(event) {
//Keep the browser from continuing to process the touch event (this also prevents a mouse event from also being delivered)
event.preventDefault();
this.mousePosition = {
x: event.touches[0].clientX,
y: event.touches[0].clientY
};
}
/**
* @param event - The browsers mousemove event object
* @return {void}
*/
mouseMove(event) {
event.preventDefault();
this.mousePosition = {
x: event.clientX,
y: event.clientY
};
}
/**
* @param event - The browsers mousemove event object
* @return {void}
*/
mouseDown(event) {
event.preventDefault();
if (this.isMouseDown) {
return;
}
this.isMouseDown = true;
this.mouseDownPosition = {
x: event.clientX,
y: event.clientY
};
}
/**
* @param event - The browsers mouseUp event object
* @return {void}
*/
mouseUp(event) {
event.preventDefault();
this.isMouseDown = false;
//Calculate the difference in position for the horizontal and the vertical axis
let dx = this.mouseDownPosition.x - this.mousePosition.x;
let dy = this.mouseDownPosition.y - this.mousePosition.y;
//Insert our new planet in the solar system based on the calculated speed and angle
this.solarSystem.planets.push(new Planet(
this.mouseDownPosition.x,
this.mouseDownPosition.y,
Math.sqrt(dx * dx + dy * dy) / 100,
Math.atan2(dy, dx),
settings.spawnMass
));
}
/**
* @param event - The browsers touchEnd event object
* @return {void}
*/
touchEnd(event) {
this.isMouseDown = false;
//Calculate the difference in position for the horizontal and the vertical axis
let dx = this.mouseDownPosition.x - this.mousePosition.x;
let dy = this.mouseDownPosition.y - this.mousePosition.y;
//Insert our new planet in the solar system based on the calculated speed and angle
this.solarSystem.planets.push(new Planet(
this.mouseDownPosition.x,
this.mouseDownPosition.y,
Math.sqrt(dx * dx + dy * dy) / 100,
Math.atan2(dy, dx),
settings.spawnMass
));
//Make sure the mouse position is offscreen again so the user doesn't see the aim pointer on mobile
this.mousePosition = {
x: -100,
y: -100
};
}
}
/**
* Vector2D class
*/
class Vector2D {
/**
* Vector constructor
*/
constructor(x, y) {
this._x = x;
this._y = y;
}
/**
* @param {number} x
* @return {void}
*/
setX(x) {
this._x = x;
}
/**
* @param {number} y
* @return {void}
*/
setY(y) {
this._y = y;
}
/**
* @return {number}
*/
getX() {
return this._x;
}
/**
* @return {number}
*/
getY() {
return this._y;
}
/**
* @param {number} angle
* @return {void}
*/
setAngle(angle) {
let length = this.getLength();
this._x = Math.cos(angle) * length;
this._y = Math.sin(angle) * length;
}
/**
* @return {number}
*/
getAngle() {
return Math.atan2(this._y, this._x);
}
/**
* @param {number} length
* @return {void}
*/
setLength(length) {
let angle = this.getAngle();
this._x = Math.cos(angle) * length;
this._y = Math.sin(angle) * length;
}
/**
* @return {number}
*/
getLength() {
return Math.sqrt(this._x * this._x + this._y * this._y);
}
/**
* @param {Vector2D} v2
* @return {Vector2D}
*/
add(v2) {
return new Vector2D(this._x + v2.getX(), this._y + v2.getY());
}
/**
* @param {Vector2D} v2
* @return {Vector2D}
*/
subtract(v2) {
return new Vector2D(this._x - v2.getX(), this._y - v2.getY());
}
/**
* @param {number} value
* @return {Vector2D}
*/
multiply(value) {
return new Vector2D(this._x * value, this._y * value);
}
/**
* @param {number} value
* @return {Vector2D}
*/
divide(value) {
return new Vector2D(this._x / value, this._y / value);
}
/**
* @param {Vector2D} v2
* @return {void}
*/
addTo(v2) {
this._x += v2.getX();
this._y += v2.getY();
}
/**
* @param {Vector2D} v2
* @return {void}
*/
subtractFrom(v2) {
this._x -= v2.getX();
this._y -= v2.getY();
}
/**
* @param {number} value
* @return {void}
*/
multiplyBy(value) {
this._x *= value;
this._y *= value;
}
/**
* @param {number} value
* @return {void}
*/
divideBy(value) {
this._x /= value;
this._y /= value;
}
}
/**
* Utilities Class has some functions that are needed throughout the entire application
*/
class Utils {
/**
* Returns a random integer between a given minimum and maximum value
* @param {number} min - The minimum value, can be negative
* @param {number} max - The maximum value, can be negative
* @return {number}
*/
static getRandomInt(min, max) {
return Math.floor(Math.random() * (max - min + 1)) + min;
}
/**
* Create a random string
* @param {number} length - The length of the random string
* @returns {string}
*/
static randomString(length) {
let text = "";
for (let i = 0; i < length; i++) {
text += ALLOWED_CHARACTERS.charAt(Math.floor(Math.random() * ALLOWED_CHARACTERS.length));
}
return text;
}
}
/**
* Onload function is executed whenever the page is done loading, initializes the application
* @return {void}
*/
window.onload = function () {
//Create a new instance of the application
const application = new Application();
//Initialize all planets for the first time
application.solarSystem.initializePlanets(application.center);
//Initialize the dat.GUI object and assign the variables that the user can adjust
const gui = new dat.GUI();
gui.add(settings, 'spawnMass', 5, 200);
gui.add(settings, 'amountOfPredictions', 50, 500);
gui.add(settings, 'pauseWhileAiming');
gui.add(application, 'reset');
gui.close();
//Start the initial loop function for the first time
application.loop();
};
Also see: Tab Triggers