123

Pen Settings

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

You're using npm packages, so we've auto-selected Babel for you here, which we require to process imports and make it all work. If you need to use a different JavaScript preprocessor, remove the packages in the npm tab.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Use npm Packages

We can make npm packages available for you to use in your JavaScript. We use webpack to prepare them and make them available to import. We'll also process your JavaScript with Babel.

⚠️ This feature can only be used by logged in users.

Code Indentation

     

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

HTML Settings

Here you can Sed posuere consectetur est at lobortis. Donec ullamcorper nulla non metus auctor fringilla. Maecenas sed diam eget risus varius blandit sit amet non magna. Donec id elit non mi porta gravida at eget metus. Praesent commodo cursus magna, vel scelerisque nisl consectetur et.

            
              <!--
Some blur-masked text by Matt DesLauriers
@mattdesl


The blur is achieved with Quasimondo's Stack Blur:
http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html
-->

<img id="image" style="display:none;" src="" />
            
          
!
            
              (function e(t,n,r){function s(o,u){if(!n[o]){if(!t[o]){var a=typeof require=="function"&&require;if(!u&&a)return a(o,!0);if(i)return i(o,!0);throw new Error("Cannot find module '"+o+"'")}var f=n[o]={exports:{}};t[o][0].call(f.exports,function(e){var n=t[o][1][e];return s(n?n:e)},f,f.exports,e,t,n,r)}return n[o].exports}var i=typeof require=="function"&&require;for(var o=0;o<r.length;o++)s(r[o]);return s})({1:[function(require,module,exports){

var domready = require('domready');
var stackblur = require('stackblur');

domready(function() {
    var canvas = document.createElement("canvas"),
        mask = document.createElement("canvas");
    document.body.appendChild(canvas);

    var context = canvas.getContext("2d"),
        maskContext = mask.getContext("2d");

    //If we weren't using base 64, we could use a big image that fills the screen
    var width = 500, 
        height = 313;

    
 
    mask.width = canvas.width = width;
    mask.height = canvas.height = height;

    document.body.style.background = "black";
    document.body.style.margin = "0";
    document.body.style.overflow = "hidden";

    var blurred;

    var img = getImage();

    var time = 0;

    var imgWidth, imgHeight;

    var tweener = {
        clip: 0,
        y: 0
    };

    var motion = {
        x: 0, y: 0
    };

    window.addEventListener("resize", function() {
        // mask.width = canvas.width = width = window.innerWidth;
        // mask.height = canvas.height = height = 400;
    }, false);

    window.addEventListener("mousemove", function(ev) {
        TweenLite.to(motion, 0.5, {
            ease: Strong.easeOut,
            x: imgWidth/2 - ev.clientX,
            y: imgHeight/2 - ev.clientY,
            overwrite: 1
        });
    }, false);

    

    function createBlur() {
        var radius = 20;
        blurred = document.createElement("canvas");
        blurred.width = imgWidth;
        blurred.height = imgHeight;
        var blurredContext = blurred.getContext("2d");

        blurredContext.drawImage(img, 0, 0);
        var imgData = blurredContext.getImageData(0, 0, imgWidth, imgHeight);
        var pixels = imgData.data;

        stackblur.blur(pixels, imgWidth, imgHeight, radius);
        stackblur.blur(pixels, imgWidth, imgHeight, radius);

        blurredContext.putImageData(imgData, 0, 0);
    }

    function animate(delay) {
        delay=delay||0;

        TweenLite.fromTo(tweener, 1.0, {
            clip: 1,
        }, {
            clip: 0,
            delay: delay+0.5,
            ease: Strong.easeOut 
        });

        TweenLite.fromTo(tweener, 2.0, {
            y: height,
        }, {
            y: 0,
            delay: delay+1.25,
            ease: Strong.easeOut
        });

        TweenLite.to(tweener, 0.75, {
            y: height,
            clip: 1,
            delay: delay+5,
            ease: Strong.easeOut,
            onComplete: animate.bind(this, 2.0)
        });
    }

    //usually we would just pipe start() function into the image's load listener...
    //codepen workarounds make this kinda tricky though
    var started = false;
    requestAnimationFrame(render);

    function start() {
        started = true;
        imgWidth = img.width;
        imgHeight = img.height;
        
        createBlur();
        animate();

        render();
    }



    function render() {
        //not loaded
        if (!started && img.width !== 0) {
            start();
        }
        time += 0.01;


        var aspect = imgWidth/imgHeight;
        var dstHeight = width / aspect;

        requestAnimationFrame(render);

        context.clearRect(0, 0, width, height);

        
        context.drawImage(blurred, 0, 0, width, dstHeight);


        maskContext.clearRect(0, 0, width, height);
        maskContext.fillStyle = 'white';
        maskContext.globalCompositeOperation = 'source-over';

        var fontSize = 200;
        maskContext.font = "bold "+fontSize+"px 'Arial Black', 'Helvetica', sans-serif";
        maskContext.textBaseline = "middle";
        maskContext.textAlign = "center";

        var parallax = -0.05;
        var hoff = Math.min(height/2, dstHeight/2);
        maskContext.fillText("NYC", width/2 + motion.x*parallax, tweener.y + hoff + motion.y*parallax);

        maskContext.fillRect(0, 0, width, tweener.clip * dstHeight);

        maskContext.globalCompositeOperation = 'source-in';
        maskContext.drawImage(img, 0, 0, width, dstHeight);

        context.drawImage(mask, 0, 0, width, height);
    }

});

function getImage(onload) {
    return document.getElementById("image");
}
},{"domready":2,"stackblur":3}],2:[function(require,module,exports){
/*!
  * domready (c) Dustin Diaz 2014 - License MIT
  */
!function (name, definition) {

  if (typeof module != 'undefined') module.exports = definition()
  else if (typeof define == 'function' && typeof define.amd == 'object') define(definition)
  else this[name] = definition()

}('domready', function () {

  var fns = [], listener
    , doc = document
    , domContentLoaded = 'DOMContentLoaded'
    , loaded = /^loaded|^i|^c/.test(doc.readyState)

  if (!loaded)
  doc.addEventListener(domContentLoaded, listener = function () {
    doc.removeEventListener(domContentLoaded, listener)
    loaded = 1
    while (listener = fns.shift()) listener()
  })

  return function (fn) {
    loaded ? fn() : fns.push(fn)
  }

});

},{}],3:[function(require,module,exports){
/*

StackBlur - a fast almost Gaussian Blur For Canvas

Version: 	0.5
Author:		Mario Klingemann
Contact: 	mario@quasimondo.com
Website:	http://www.quasimondo.com/StackBlurForCanvas
Twitter:	@quasimondo

In case you find this class useful - especially in commercial projects -
I am not totally unhappy for a small donation to my PayPal account
mario@quasimondo.de

Or support me on flattr: 
https://flattr.com/thing/72791/StackBlur-a-fast-almost-Gaussian-Blur-Effect-for-CanvasJavascript

Copyright (c) 2010 Mario Klingemann

Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
*/

var mul_table = [
        512,512,456,512,328,456,335,512,405,328,271,456,388,335,292,512,
        454,405,364,328,298,271,496,456,420,388,360,335,312,292,273,512,
        482,454,428,405,383,364,345,328,312,298,284,271,259,496,475,456,
        437,420,404,388,374,360,347,335,323,312,302,292,282,273,265,512,
        497,482,468,454,441,428,417,405,394,383,373,364,354,345,337,328,
        320,312,305,298,291,284,278,271,265,259,507,496,485,475,465,456,
        446,437,428,420,412,404,396,388,381,374,367,360,354,347,341,335,
        329,323,318,312,307,302,297,292,287,282,278,273,269,265,261,512,
        505,497,489,482,475,468,461,454,447,441,435,428,422,417,411,405,
        399,394,389,383,378,373,368,364,359,354,350,345,341,337,332,328,
        324,320,316,312,309,305,301,298,294,291,287,284,281,278,274,271,
        268,265,262,259,257,507,501,496,491,485,480,475,470,465,460,456,
        451,446,442,437,433,428,424,420,416,412,408,404,400,396,392,388,
        385,381,377,374,370,367,363,360,357,354,350,347,344,341,338,335,
        332,329,326,323,320,318,315,312,310,307,304,302,299,297,294,292,
        289,287,285,282,280,278,275,273,271,269,267,265,263,261,259];
        
   
var shg_table = [
	     9, 11, 12, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 
		17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 
		19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 20, 20, 20,
		20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 21,
		21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21,
		21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 22, 
		22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
		22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 
		23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
		23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23,
		23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 
		23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 
		24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
		24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
		24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24,
		24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24 ];

function blur( pixels, width, height, radius )
{
	if ( isNaN(radius) || radius < 1 ) return;
	radius |= 0;

	var x, y, i, p, yp, yi, yw, r_sum, g_sum, b_sum, a_sum, 
	r_out_sum, g_out_sum, b_out_sum, a_out_sum,
	r_in_sum, g_in_sum, b_in_sum, a_in_sum, 
	pr, pg, pb, pa, rbs;
			
	var div = radius + radius + 1;
	var w4 = width << 2;
	var widthMinus1  = width - 1;
	var heightMinus1 = height - 1;
	var radiusPlus1  = radius + 1;
	var sumFactor = radiusPlus1 * ( radiusPlus1 + 1 ) / 2;
	
	var stackStart = new BlurStack();
	var stack = stackStart;
	for ( i = 1; i < div; i++ )
	{
		stack = stack.next = new BlurStack();
		if ( i == radiusPlus1 ) var stackEnd = stack;
	}
	stack.next = stackStart;
	var stackIn = null;
	var stackOut = null;
	
	yw = yi = 0;
	
	var mul_sum = mul_table[radius];
	var shg_sum = shg_table[radius];
	
	for ( y = 0; y < height; y++ )
	{
		r_in_sum = g_in_sum = b_in_sum = a_in_sum = r_sum = g_sum = b_sum = a_sum = 0;
		
		r_out_sum = radiusPlus1 * ( pr = pixels[yi] );
		g_out_sum = radiusPlus1 * ( pg = pixels[yi+1] );
		b_out_sum = radiusPlus1 * ( pb = pixels[yi+2] );
		a_out_sum = radiusPlus1 * ( pa = pixels[yi+3] );
		
		r_sum += sumFactor * pr;
		g_sum += sumFactor * pg;
		b_sum += sumFactor * pb;
		a_sum += sumFactor * pa;
		
		stack = stackStart;
		
		for( i = 0; i < radiusPlus1; i++ )
		{
			stack.r = pr;
			stack.g = pg;
			stack.b = pb;
			stack.a = pa;
			stack = stack.next;
		}
		
		for( i = 1; i < radiusPlus1; i++ )
		{
			p = yi + (( widthMinus1 < i ? widthMinus1 : i ) << 2 );
			r_sum += ( stack.r = ( pr = pixels[p])) * ( rbs = radiusPlus1 - i );
			g_sum += ( stack.g = ( pg = pixels[p+1])) * rbs;
			b_sum += ( stack.b = ( pb = pixels[p+2])) * rbs;
			a_sum += ( stack.a = ( pa = pixels[p+3])) * rbs;
			
			r_in_sum += pr;
			g_in_sum += pg;
			b_in_sum += pb;
			a_in_sum += pa;
			
			stack = stack.next;
		}
		
		
		stackIn = stackStart;
		stackOut = stackEnd;
		for ( x = 0; x < width; x++ )
		{
			pixels[yi+3] = pa = (a_sum * mul_sum) >> shg_sum;
			if ( pa != 0 )
			{
				pa = 255 / pa;
				pixels[yi]   = ((r_sum * mul_sum) >> shg_sum) * pa;
				pixels[yi+1] = ((g_sum * mul_sum) >> shg_sum) * pa;
				pixels[yi+2] = ((b_sum * mul_sum) >> shg_sum) * pa;
			} else {
				pixels[yi] = pixels[yi+1] = pixels[yi+2] = 0;
			}
			
			r_sum -= r_out_sum;
			g_sum -= g_out_sum;
			b_sum -= b_out_sum;
			a_sum -= a_out_sum;
			
			r_out_sum -= stackIn.r;
			g_out_sum -= stackIn.g;
			b_out_sum -= stackIn.b;
			a_out_sum -= stackIn.a;
			
			p =  ( yw + ( ( p = x + radius + 1 ) < widthMinus1 ? p : widthMinus1 ) ) << 2;
			
			r_in_sum += ( stackIn.r = pixels[p]);
			g_in_sum += ( stackIn.g = pixels[p+1]);
			b_in_sum += ( stackIn.b = pixels[p+2]);
			a_in_sum += ( stackIn.a = pixels[p+3]);
			
			r_sum += r_in_sum;
			g_sum += g_in_sum;
			b_sum += b_in_sum;
			a_sum += a_in_sum;
			
			stackIn = stackIn.next;
			
			r_out_sum += ( pr = stackOut.r );
			g_out_sum += ( pg = stackOut.g );
			b_out_sum += ( pb = stackOut.b );
			a_out_sum += ( pa = stackOut.a );
			
			r_in_sum -= pr;
			g_in_sum -= pg;
			b_in_sum -= pb;
			a_in_sum -= pa;
			
			stackOut = stackOut.next;

			yi += 4;
		}
		yw += width;
	}

	
	for ( x = 0; x < width; x++ )
	{
		g_in_sum = b_in_sum = a_in_sum = r_in_sum = g_sum = b_sum = a_sum = r_sum = 0;
		
		yi = x << 2;
		r_out_sum = radiusPlus1 * ( pr = pixels[yi]);
		g_out_sum = radiusPlus1 * ( pg = pixels[yi+1]);
		b_out_sum = radiusPlus1 * ( pb = pixels[yi+2]);
		a_out_sum = radiusPlus1 * ( pa = pixels[yi+3]);
		
		r_sum += sumFactor * pr;
		g_sum += sumFactor * pg;
		b_sum += sumFactor * pb;
		a_sum += sumFactor * pa;
		
		stack = stackStart;
		
		for( i = 0; i < radiusPlus1; i++ )
		{
			stack.r = pr;
			stack.g = pg;
			stack.b = pb;
			stack.a = pa;
			stack = stack.next;
		}
		
		yp = width;
		
		for( i = 1; i <= radius; i++ )
		{
			yi = ( yp + x ) << 2;
			
			r_sum += ( stack.r = ( pr = pixels[yi])) * ( rbs = radiusPlus1 - i );
			g_sum += ( stack.g = ( pg = pixels[yi+1])) * rbs;
			b_sum += ( stack.b = ( pb = pixels[yi+2])) * rbs;
			a_sum += ( stack.a = ( pa = pixels[yi+3])) * rbs;
		   
			r_in_sum += pr;
			g_in_sum += pg;
			b_in_sum += pb;
			a_in_sum += pa;
			
			stack = stack.next;
		
			if( i < heightMinus1 )
			{
				yp += width;
			}
		}
		
		yi = x;
		stackIn = stackStart;
		stackOut = stackEnd;
		for ( y = 0; y < height; y++ )
		{
			p = yi << 2;
			pixels[p+3] = pa = (a_sum * mul_sum) >> shg_sum;
			if ( pa > 0 )
			{
				pa = 255 / pa;
				pixels[p]   = ((r_sum * mul_sum) >> shg_sum ) * pa;
				pixels[p+1] = ((g_sum * mul_sum) >> shg_sum ) * pa;
				pixels[p+2] = ((b_sum * mul_sum) >> shg_sum ) * pa;
			} else {
				pixels[p] = pixels[p+1] = pixels[p+2] = 0;
			}
			
			r_sum -= r_out_sum;
			g_sum -= g_out_sum;
			b_sum -= b_out_sum;
			a_sum -= a_out_sum;
		   
			r_out_sum -= stackIn.r;
			g_out_sum -= stackIn.g;
			b_out_sum -= stackIn.b;
			a_out_sum -= stackIn.a;
			
			p = ( x + (( ( p = y + radiusPlus1) < heightMinus1 ? p : heightMinus1 ) * width )) << 2;
			
			r_sum += ( r_in_sum += ( stackIn.r = pixels[p]));
			g_sum += ( g_in_sum += ( stackIn.g = pixels[p+1]));
			b_sum += ( b_in_sum += ( stackIn.b = pixels[p+2]));
			a_sum += ( a_in_sum += ( stackIn.a = pixels[p+3]));
		   
			stackIn = stackIn.next;
			
			r_out_sum += ( pr = stackOut.r );
			g_out_sum += ( pg = stackOut.g );
			b_out_sum += ( pb = stackOut.b );
			a_out_sum += ( pa = stackOut.a );
			
			r_in_sum -= pr;
			g_in_sum -= pg;
			b_in_sum -= pb;
			a_in_sum -= pa;
			
			stackOut = stackOut.next;
			
			yi += width;
		}
	}
}

function BlurStack()
{
	this.r = 0;
	this.g = 0;
	this.b = 0;
	this.a = 0;
	this.next = null;
}

function createBlurredCanvas(img, radius, padding) {
	var w = img.width,
		h = img.height;

	padding = (padding===0||padding) ? padding : radius;
	w += padding;
	h += padding;

	var canvas = document.createElement("canvas");
	canvas.width = w;
	canvas.height = h;
	var context = canvas.getContext("2d");

	context.drawImage(img, padding/2, padding/2);
	var imgData = context.getImageData(0, 0, w, h);
	var pixels = imgData.data;

	blur(pixels, w, h, radius);

	context.putImageData(imgData, 0, 0);
	return canvas;
}

module.exports = {
	blur: blur,
	createBlurredCanvas: createBlurredCanvas
};
},{}]},{},[1])
            
          
!
999px
🕑 One or more of the npm packages you are using needs to be built. You're the first person to ever need it! We're building it right now and your preview will start updating again when it's ready.

Console