Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using it's URL and the proper URL extention.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
              
            
!

CSS

              
                
              
            
!

JS

              
                import * as THREE from 'https://unpkg.com/three@0.118.3/build/three.module.js'
import { OrbitControls } from 'https://unpkg.com/three@0.118.3/examples/jsm/controls/OrbitControls.js'
import Stats from 'https://unpkg.com/three@0.118.3/examples/jsm/libs/stats.module.js'

// init three.js
const webgl = initWebGLApp()

// init stats.js
const stats = initStats()

// init the controls-state panel
const controls = initControls({
  diffuse: '#5B82A6',
  roughness: 0.5,
  noise: {
    amplitude: 0.4,
    frequency: State.Slider(0.5, { max: 2 }),
    speed: State.Slider(0.3, { max: 2 }),
  }
})


const SIZE = 4
const RESOLUTION = 256

const geometry = new THREE.PlaneBufferGeometry(SIZE, SIZE, RESOLUTION, RESOLUTION).rotateX(-Math.PI / 2)

const material = new THREE.ShaderMaterial({
  lights: true,
  side: THREE.DoubleSide,
  extensions: {
    derivatives: true,
  },

  defines: {
    STANDARD: '',
    PHYSICAL: '',
  },

  uniforms: {
    ...THREE.ShaderLib.physical.uniforms,
    ...controls.toUniforms,
    ...controls.noise.toUniforms,
    time: { value: 0 },
  },

  vertexShader: monkeyPatch(THREE.ShaderChunk.meshphysical_vert, {
    header: `
      uniform float time;
      uniform float amplitude;
      uniform float speed;
      uniform float frequency;

      ${noise()}
      
      // the function which defines the displacement
      float displace(vec3 point) {
        return noise(vec3(point.x * frequency, point.z * frequency, time * speed)) * amplitude;
      }
      
      // http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts
      vec3 orthogonal(vec3 v) {
        return normalize(abs(v.x) > abs(v.z) ? vec3(-v.y, v.x, 0.0)
        : vec3(0.0, -v.z, v.y));
      }
    `,
    // adapted from http://tonfilm.blogspot.com/2007/01/calculate-normals-in-shader.html
    main: `
      vec3 displacedPosition = position + normal * displace(position);


      float offset = ${SIZE / RESOLUTION};
      vec3 tangent = orthogonal(normal);
      vec3 bitangent = normalize(cross(normal, tangent));
      vec3 neighbour1 = position + tangent * offset;
      vec3 neighbour2 = position + bitangent * offset;
      vec3 displacedNeighbour1 = neighbour1 + normal * displace(neighbour1);
      vec3 displacedNeighbour2 = neighbour2 + normal * displace(neighbour2);

      // https://i.ya-webdesign.com/images/vector-normals-tangent-16.png
      vec3 displacedTangent = displacedNeighbour1 - displacedPosition;
      vec3 displacedBitangent = displacedNeighbour2 - displacedPosition;

      // https://upload.wikimedia.org/wikipedia/commons/d/d2/Right_hand_rule_cross_product.svg
      vec3 displacedNormal = normalize(cross(displacedTangent, displacedBitangent));
    `,

    '#include <defaultnormal_vertex>': THREE.ShaderChunk.defaultnormal_vertex.replace(
      // transformedNormal will be used in the lighting calculations
      'vec3 transformedNormal = objectNormal;',
      `vec3 transformedNormal = displacedNormal;`
    ),

    // transformed is the output position
    '#include <displacementmap_vertex>': `
      transformed = displacedPosition;
    `,
  }),
  
  fragmentShader: THREE.ShaderChunk.meshphysical_frag,
})



const plane = new THREE.Mesh(geometry, material)
webgl.scene.add(plane)


// LIGHTS
const directionalLight = new THREE.DirectionalLight(0xffffff, 0.6)
directionalLight.position.set(-0.5, 10, -10)
webgl.scene.add(directionalLight)

const ambientLight = new THREE.AmbientLight(0xffffff, 0.3)
webgl.scene.add(ambientLight)


function update(ms) {
  const time = ms * 0.001
  stats.begin()

  // update the time uniform
  plane.material.uniforms.time.value = time
  

  webgl.render()
  webgl.orbitControls.update()
  
  stats.end()
  requestAnimationFrame(update)
}
requestAnimationFrame(update)





//------------------------
// BOILERPLATE BELOW
//------------------------



function initWebGLApp() {
  const canvas = document.createElement('canvas')
  document.body.appendChild(canvas)

  const renderer = new THREE.WebGLRenderer({
    canvas,
    alpha: true,
    antialias: true,
  })
  
  renderer.setClearColor('#111', 1)
  
  const fov = 45
  const near = 0.01
  const far = 100
  const camera = new THREE.PerspectiveCamera(fov, 1, near, far)
  
  // move the camera back
  camera.position.set(-2, 3, 5)
  
  const scene = new THREE.Scene()
  
  const orbitControls = new OrbitControls(camera, renderer.domElement)
  orbitControls.enableDamping = true
  
  function resize() {
    const width = window.innerWidth
    const height = window.innerHeight
    
    renderer.setSize(width, height)
    renderer.setPixelRatio(window.devicePixelRatio) // 2 in case of retinas
    
    if (camera.isPerspectiveCamera) {
      camera.aspect = width / height
    }
    camera.updateProjectionMatrix()
  }
  
  function render() {
    renderer.render(scene, camera)
  }
  
  // initial resize and render
  resize()
  render()
  
  // add resize listener
  window.addEventListener('resize', resize)
  
  return {
    canvas,
    renderer, 
    camera, 
    orbitControls,
    scene, 
    resize, 
    render,
  }
}

function initStats() {
  const stats = new Stats()
  stats.showPanel(0)
  document.body.appendChild(stats.dom)
  return stats
}


function initControls(controlsObject, options = {}) {
  const controls = wrapGUI(State(controlsObject), { expanded: !options.closeControls })

  // add the custom controls-gui styles
  const styles = `
    [class^="controlPanel-"] [class*="__field"]::before {
      content: initial !important;
    }
    [class^="controlPanel-"] [class*="__labelText"] {
      text-indent: 6px !important;
    }
    [class^="controlPanel-"] [class*="__field--button"] > button::before {
      content: initial !important;
    }
  `
  const style = document.createElement('style')
  style.type = 'text/css'
  style.innerHTML = styles
  document.head.appendChild(style)

  // add .toUniforms property to be used in materials
  Object.keys(controlsObject).forEach((key) => {
    if (controls[key].$field?.type !== 'section') {
      return
    }

    const section = controls[key]

    // make it non-enumerable
    Object.defineProperty(section, 'toUniforms', {
      value: {},
    })

    Object.keys(section).forEach((property) => {
      section.toUniforms[property] = { value: section[property] }
    })

    section.$onChange((event) => {
      section.toUniforms[event.name].value = event.value
    })
  })
  
  
  // add .toUniforms property at the root level
  Object.defineProperty(controls, 'toUniforms', {
    value: {},
  })

  Object.keys(controlsObject).forEach((key) => {
    if (controls[key].$field?.type === 'section') {
      return
    }
    
    // support only colors and numbers for now
    const value = typeof controls[key] === 'string' ? new THREE.Color(controls[key]) : controls[key]
    
    controls.toUniforms[key] = { value }
  })

  controls.$onChange((event) => {
    // return if it's a child
    if (event.fullPath.includes('.')) {
      return
    }  
    
    // support only colors and numbers for now
    const value = typeof event.value === 'string' ? new THREE.Color(event.value) : event.value
    
    controls.toUniforms[event.name].value = value
  })

  return controls
}


//------------------------
// UTIL FUNCTIONS BELOW
//------------------------


function monkeyPatch(shader, { defines = '', header = '', main = '', ...replaces }) {
  let patchedShader = shader

  const replaceAll = (str, find, rep) => str.split(find).join(rep)
  Object.keys(replaces).forEach((key) => {
    patchedShader = replaceAll(patchedShader, key, replaces[key])
  })

  patchedShader = patchedShader.replace(
    'void main() {',
    `
    ${header}
    void main() {
      ${main}
    `
  )

  return `
    ${defines}
    ${patchedShader}
  `
}

// from https://github.com/hughsk/glsl-noise/blob/master/simplex/3d.glsl
function noise() {
  return `
    //
    // Description : Array and textureless GLSL 2D/3D/4D simplex
    //               noise functions.
    //      Author : Ian McEwan, Ashima Arts.
    //  Maintainer : ijm
    //     Lastmod : 20110822 (ijm)
    //     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
    //               Distributed under the MIT License. See LICENSE file.
    //               https://github.com/ashima/webgl-noise
    //

    vec3 mod289(vec3 x) {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    }

    vec4 mod289(vec4 x) {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    }

    vec4 permute(vec4 x) {
         return mod289(((x*34.0)+1.0)*x);
    }

    vec4 taylorInvSqrt(vec4 r)
    {
      return 1.79284291400159 - 0.85373472095314 * r;
    }

    float noise(vec3 v)
      {
      const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
      const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

    // First corner
      vec3 i  = floor(v + dot(v, C.yyy) );
      vec3 x0 =   v - i + dot(i, C.xxx) ;

    // Other corners
      vec3 g = step(x0.yzx, x0.xyz);
      vec3 l = 1.0 - g;
      vec3 i1 = min( g.xyz, l.zxy );
      vec3 i2 = max( g.xyz, l.zxy );

      //   x0 = x0 - 0.0 + 0.0 * C.xxx;
      //   x1 = x0 - i1  + 1.0 * C.xxx;
      //   x2 = x0 - i2  + 2.0 * C.xxx;
      //   x3 = x0 - 1.0 + 3.0 * C.xxx;
      vec3 x1 = x0 - i1 + C.xxx;
      vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
      vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

    // Permutations
      i = mod289(i);
      vec4 p = permute( permute( permute(
                 i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
               + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
               + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

    // Gradients: 7x7 points over a square, mapped onto an octahedron.
    // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
      float n_ = 0.142857142857; // 1.0/7.0
      vec3  ns = n_ * D.wyz - D.xzx;

      vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

      vec4 x_ = floor(j * ns.z);
      vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

      vec4 x = x_ *ns.x + ns.yyyy;
      vec4 y = y_ *ns.x + ns.yyyy;
      vec4 h = 1.0 - abs(x) - abs(y);

      vec4 b0 = vec4( x.xy, y.xy );
      vec4 b1 = vec4( x.zw, y.zw );

      //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
      //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
      vec4 s0 = floor(b0)*2.0 + 1.0;
      vec4 s1 = floor(b1)*2.0 + 1.0;
      vec4 sh = -step(h, vec4(0.0));

      vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
      vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

      vec3 p0 = vec3(a0.xy,h.x);
      vec3 p1 = vec3(a0.zw,h.y);
      vec3 p2 = vec3(a1.xy,h.z);
      vec3 p3 = vec3(a1.zw,h.w);

    //Normalise gradients
      vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
      p0 *= norm.x;
      p1 *= norm.y;
      p2 *= norm.z;
      p3 *= norm.w;

    // Mix final noise value
      vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
      m = m * m;
      return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                    dot(p2,x2), dot(p3,x3) ) );
      }

  `
}

              
            
!
999px

Console