HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<script id="custom-vertex" type="x-shader/x-vertex">
//
// GLSL textureless classic 3D noise "cnoise",
// with an RSL-style periodic variant "pnoise".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-10-11
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/stegu/webgl-noise
//
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
// Classic Perlin noise
float cnoise(vec3 P)
{
vec3 Pi0 = floor(P); // Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
// Classic Perlin noise, periodic variant
float pnoise(vec3 P, vec3 rep)
{
vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period
vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P); // Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
#define PHYSICAL
varying vec3 vViewPosition;
#ifndef FLAT_SHADED
varying vec3 vNormal;
#endif
#include <common>
#include <uv_pars_vertex>
#include <uv2_pars_vertex>
#include <displacementmap_pars_vertex>
#include <color_pars_vertex>
#include <fog_pars_vertex>
#include <morphtarget_pars_vertex>
#include <skinning_pars_vertex>
#include <shadowmap_pars_vertex>
#include <logdepthbuf_pars_vertex>
#include <clipping_planes_pars_vertex>
uniform float time;
uniform float maxHeight;
uniform float speed;
uniform float distortCenter;
uniform float ticknessOffset;
varying float vDisplace;
varying vec4 color;
void main() {
float t = time * speed;
float wRoad = distortCenter;
float wRoad2 = wRoad * 0.5;
float angleCenter = uv.y * PI*4.0;
angleCenter += t * 0.9;
float centerOff = (
sin(angleCenter) +
sin(angleCenter*0.5)
) * wRoad;
vec3 noiseIn = vec3(uv, 1.0)*20.0;
float noise = cnoise(vec3(noiseIn.x, noiseIn.y + t, noiseIn.z));
noise += 1.0;
float h = noise;
float angle = (uv.x - centerOff) * PI;
float f = abs(cos(angle));
h *= pow(f, 1.5 + ticknessOffset);
// water
/*if(h < 0.02){
float am = 8.0;
h += cnoise(vec3(noiseIn.x*am, noiseIn.y*am + t*4.0, noiseIn.z*am)) * 0.01;
}*/
vDisplace = h;
h*=maxHeight;
#include <uv_vertex>
#include <uv2_vertex>
#include <color_vertex>
// #include <beginnormal_vertex>
vec3 objectNormal = vec3( normal.x, normal.y, normal.z );
#include <morphnormal_vertex>
#include <skinbase_vertex>
#include <skinnormal_vertex>
#include <defaultnormal_vertex>
#ifndef FLAT_SHADED
vNormal = normalize( transformedNormal );
#endif
//#include <begin_vertex>
vec3 transformed = vec3( position.x, position.y, position.z + h );
#include <morphtarget_vertex>
#include <skinning_vertex>
#include <displacementmap_vertex>
#include <project_vertex>
#include <logdepthbuf_vertex>
#include <clipping_planes_vertex>
vViewPosition = - mvPosition.xyz;
#include <worldpos_vertex>
#include <shadowmap_vertex>
#include <fog_vertex>
}
</script>
<script id="custom-fragment" type="x-shader/x-fragment">
#define PHYSICAL
uniform vec3 diffuse;
uniform vec3 emissive;
uniform float roughness;
uniform float metalness;
uniform float opacity;
#ifndef STANDARD
uniform float clearCoat;
uniform float clearCoatRoughness;
#endif
varying vec3 vViewPosition;
#ifndef FLAT_SHADED
varying vec3 vNormal;
#endif
#include <common>
#include <packing>
#include <dithering_pars_fragment>
#include <color_pars_fragment>
#include <uv_pars_fragment>
#include <uv2_pars_fragment>
#include <map_pars_fragment>
#include <alphamap_pars_fragment>
#include <aomap_pars_fragment>
#include <lightmap_pars_fragment>
#include <emissivemap_pars_fragment>
#include <bsdfs>
#include <cube_uv_reflection_fragment>
#include <envmap_pars_fragment>
#include <envmap_physical_pars_fragment>
#include <fog_pars_fragment>
#include <lights_pars_begin>
#include <lights_physical_pars_fragment>
#include <shadowmap_pars_fragment>
#include <bumpmap_pars_fragment>
#include <normalmap_pars_fragment>
#include <roughnessmap_pars_fragment>
#include <metalnessmap_pars_fragment>
#include <logdepthbuf_pars_fragment>
#include <clipping_planes_pars_fragment>
// Function from Iñigo Quiles
// https://www.shadertoy.com/view/MsS3Wc
vec3 hsb2rgb( in vec3 c ){
vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
6.0)-3.0)-1.0,
0.0,
1.0 );
rgb = rgb*rgb*(3.0-2.0*rgb);
return c.z * mix(vec3(1.0), rgb, c.y);
}
uniform float time;
uniform sampler2D pallete;
varying float vDisplace;
varying vec4 color;
void main() {
vec2 stripPos = vec2( 0.0, vDisplace );
vec4 stripColor = texture2D( pallete, stripPos );
stripColor *= pow(1.0-vDisplace, 1.0);
// gl_FragColor *= vec4(stripColor.rgb, 1.0);
#include <clipping_planes_fragment>
vec4 diffuseColor = vec4( diffuse * stripColor.rgb, opacity );
ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );
vec3 totalEmissiveRadiance = emissive;
#include <logdepthbuf_fragment>
#include <map_fragment>
#include <color_fragment>
#include <alphamap_fragment>
#include <alphatest_fragment>
#include <roughnessmap_fragment>
#include <metalnessmap_fragment>
#include <normal_fragment_begin>
#include <normal_fragment_maps>
#include <emissivemap_fragment>
#include <lights_physical_fragment>
#include <lights_fragment_begin>
#include <lights_fragment_maps>
#include <lights_fragment_end>
#include <aomap_fragment>
vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;
gl_FragColor = vec4( outgoingLight, diffuseColor.a );
#include <tonemapping_fragment>
#include <encodings_fragment>
#include <fog_fragment>
#include <premultiplied_alpha_fragment>
#include <dithering_fragment>
}
</script>
<h5 class="message">DRAG ME!</h5>
html, body {
height: 100%;
width: 100%;
overflow: hidden;
margin:0;
font-family:Arial;
color:white;
}
a:link, a:hover, a:visited, a:active{
color:white;
text-decoration: none;
}
.message{
padding:20px;
position:absolute;
display: none;
top:50%;
left:50%;
transform:translate(-50%, -50%);
background:black;
}
.experiment-url{
position:absolute;
bottom:10px;
right:10px;
padding:8px;
z-index: 1;
font-size: 11px;
background:black;
letter-spacing:0.5px;
border: 1px solid white;
}
var isInteractive = true;
var width, height;
var scene, camera, renderer, light;
var controls;
var terrain;
var cubemapRT, cubeRenderTarget;
var composer;
var message = document.querySelector(".message")
var hammer;
var mouse = {x:0, y:0};
var isMobile = typeof window.orientation !== 'undefined'
var palleteBlack = {
colors:[
{ c: "#111111", l:5 },
{ c: "#ed254e", l:1 },
{ c: "#f9dc5c", l:1 },
{ c: "#c2eabd", l:1 },
{ c: "#011936", l:1 },
{ c: "#465362", l:1 },
],
topColor:null,
repeat:10,
shuffle:true,
texture:null,
}
var palleteObj = palleteBlack
function init(){
textureLoader = new THREE.TextureLoader();
palleteObj.texture = textureLoader.load(createPalleteImg(palleteObj))
build()
}
var bl = true
function build(){
setup();
elements();
if(isInteractive){
hammer = new Hammer(document.body)
hammer.get('pinch').set({ enable: true });
hammer.on('pinch', function(ev) {
c.yd = ev.scale
});
message.innerHTML = isMobile ? "DRAG AND PINCH!" : "MOVE!"
message.style.display = "block"
window.addEventListener(isMobile ? "touchstart" : "mousemove", function(){
message.style.display = "none"
})
}
render();
if(isMobile)
window.addEventListener("touchmove", mousemove, {passive:false})
else
window.addEventListener("mousemove", mousemove)
window.addEventListener("resize", resize)
resize()
}
function setup(){
scene = new THREE.Scene();
var fogColor = new THREE.Color( 0xffffff )
scene.background = fogColor;
scene.fog = new THREE.Fog(fogColor, 10, 400);
sky()
camera = new THREE.PerspectiveCamera(60, width / height, .1, 10000);
camera.position.y = 8;
camera.position.z = 4;
ambientLight = new THREE.AmbientLight(0xffffff, 1);
scene.add(ambientLight)
renderer = new THREE.WebGLRenderer( {antialias:true} );
renderer.setPixelRatio = devicePixelRatio;
renderer.setSize(width, height);
document.body.appendChild(renderer.domElement)
}
function sky(){
sky = new THREE.Sky();
sky.scale.setScalar( 450000 );
sky.material.uniforms.turbidity.value = 20;
sky.material.uniforms.rayleigh.value = 0;
sky.material.uniforms.luminance.value = 1;
sky.material.uniforms.mieCoefficient.value = 0.01;
sky.material.uniforms.mieDirectionalG.value = 0.8;
scene.add( sky );
sunSphere = new THREE.Mesh(
new THREE.SphereBufferGeometry( 20000, 16, 8 ),
new THREE.MeshBasicMaterial( { color: 0xffffff } )
);
sunSphere.visible = false;
scene.add( sunSphere );
var theta = Math.PI * ( -0.02 );
var phi = 2 * Math.PI * ( -.25 );
sunSphere.position.x = 400000 * Math.cos( phi );
sunSphere.position.y = 400000 * Math.sin( phi ) * Math.sin( theta );
sunSphere.position.z = 400000 * Math.sin( phi ) * Math.cos( theta );
sky.material.uniforms.sunPosition.value.copy( sunSphere.position );
}
function elements(){
var w= 100
var h = 400
var geometry = new THREE.PlaneBufferGeometry(w, h,400, 400);
var colorsBuffer = new Float32Array(geometry.attributes.position.count * 3)
for ( var i = 0; i < colorsBuffer.length; i++ ) {
colorsBuffer[ i ] = Math.random()
}
geometry.addAttribute( 'vColor', new THREE.BufferAttribute( colorsBuffer, 3 ) );
var displaceBuffer = new Float32Array( geometry.attributes.position.count );
for ( var i = 0; i < displaceBuffer.length; i++ ) {
displaceBuffer[ i ] = Math.random()
}
geometry.addAttribute( 'vDisplace', new THREE.BufferAttribute( displaceBuffer, 1 ) );
var material = new MeshCustomMaterial(
{
roughness:.7,
metalness:0.1
},
{
time: { type: "f", value: 0.0 },
distortCenter: { type: "f", value: 0.1 },
ticknessOffset: { type: "f", value: 0.0 },
pallete:{ type: "t", value: null},
speed: { type: "f", value: 2.0 },
maxHeight: { type: "f", value: 10.0 },
},
document.getElementById("custom-vertex").textContent,
document.getElementById("custom-fragment").textContent
);
terrain = new THREE.Mesh(geometry, material);
terrain.position.y = h/2;
container = new THREE.Object3D();
container.add(terrain)
container.position.y = 0
container.position.z = 4
container.rotation.x = -Math.PI / 2
scene.add(container)
}
function createPalleteImg(palleteObj){
var canvas = document.createElement("canvas");
var ctx = canvas.getContext("2d");
var pallete = expandPallete(palleteObj)
var texH = 1024;
var colorH = texH / pallete.length;
canvas.width = 2;
canvas.height = texH
for(var i=0; i < pallete.length; i++){
ctx.fillStyle = pallete[i];
ctx.fillRect(0, colorH * i, canvas.width, colorH)
}
return canvas.toDataURL()
}
function expandPallete(palleteObj){
var pallete = []
for(var x=0; x < palleteObj.repeat; x++){
for(var i=0; i < palleteObj.colors.length; i++){
var colors = palleteObj.shuffle ? shuffle(palleteObj.colors.slice()) : palleteObj.colors;
var c = colors[i];
for(var j=0; j < c.l; j++){
pallete.push(c.c);
}
}
}
if(palleteObj.topColor){
pallete.push(palleteObj.topColor);
}
return pallete
}
function shuffle(o) {
for(var j, x, i = o.length; i; j = parseInt(Math.random() * i), x = o[--i], o[i] = o[j], o[j] = x);
return o;
};
var c = {x:0, y:0, xd:0, yd:0};
function render(){
requestAnimationFrame(render)
var time = performance.now() * 0.001
terrain.material.uniforms.pallete.value = palleteObj.texture;
terrain.material.uniforms.time.value = time;
if(isInteractive){
c.xd = (mouse.x)*0.2;
if(!isMobile)
c.yd = mouse.y*5;
if(c.yd < -.5) c.yd = -.5;
c.x += (c.xd - c.x) * 0.08
c.y += (c.yd - c.y) * 0.08
terrain.material.uniforms.distortCenter.value = c.x;
terrain.material.uniforms.ticknessOffset.value = c.y;
}
if(Math.sin(time + Math.PI) > 0.99){
palleteObj.texture = textureLoader.load(createPalleteImg(palleteObj))
}
renderer.render(scene, camera)
}
function mousemove(e){
e.preventDefault();
var x, y
if(e.type == "mousemove"){
x = e.clientX;
y = e.clientY;
}else{
x = e.changedTouches[0].clientX
y = e.changedTouches[0].clientY
}
mouse.x = (x / width) - 0.5
mouse.y = (y / height) - 0.5
}
function resize(){
width = window.innerWidth
height = window.innerHeight
camera.aspect = width / height;
camera.updateProjectionMatrix();
renderer.setSize( width, height );
}
function MeshCustomMaterial (parameters, uniforms, vertexShader, fragmentShader) {
THREE.MeshStandardMaterial.call( this );
this.uniforms = THREE.UniformsUtils.merge([
THREE.ShaderLib.standard.uniforms,
uniforms
]);
this.vertexShader = vertexShader;
this.fragmentShader = fragmentShader;
this.type = 'MeshCustomMaterial';
this.setValues(parameters);
}
MeshCustomMaterial.prototype = Object.create( THREE.MeshStandardMaterial.prototype );
MeshCustomMaterial.prototype.constructor = MeshCustomMaterial;
MeshCustomMaterial.prototype.isMeshStandardMaterial = true;
window.onload = init
/**
* @author zz85 / https://github.com/zz85
*
* Based on "A Practical Analytic Model for Daylight"
* aka The Preetham Model, the de facto standard analytic skydome model
* http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf
*
* First implemented by Simon Wallner
* http://www.simonwallner.at/projects/atmospheric-scattering
*
* Improved by Martin Upitis
* http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR
*
* Three.js integration by zz85 http://twitter.com/blurspline
*/
THREE.Sky = function () {
var shader = THREE.Sky.SkyShader;
var material = new THREE.ShaderMaterial( {
fragmentShader: shader.fragmentShader,
vertexShader: shader.vertexShader,
uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
side: THREE.BackSide
} );
THREE.Mesh.call( this, new THREE.BoxBufferGeometry( 1, 1, 1 ), material );
};
THREE.Sky.prototype = Object.create( THREE.Mesh.prototype );
THREE.Sky.SkyShader = {
uniforms: {
luminance: { value: 1 },
turbidity: { value: 2 },
rayleigh: { value: 1 },
mieCoefficient: { value: 0.005 },
mieDirectionalG: { value: 0.8 },
sunPosition: { value: new THREE.Vector3() }
},
vertexShader: [
'uniform vec3 sunPosition;',
'uniform float rayleigh;',
'uniform float turbidity;',
'uniform float mieCoefficient;',
'varying vec3 vWorldPosition;',
'varying vec3 vSunDirection;',
'varying float vSunfade;',
'varying vec3 vBetaR;',
'varying vec3 vBetaM;',
'varying float vSunE;',
'const vec3 up = vec3( 0.0, 1.0, 0.0 );',
// constants for atmospheric scattering
'const float e = 2.71828182845904523536028747135266249775724709369995957;',
'const float pi = 3.141592653589793238462643383279502884197169;',
// wavelength of used primaries, according to preetham
'const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );',
// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function:
// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn))
'const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );',
// mie stuff
// K coefficient for the primaries
'const float v = 4.0;',
'const vec3 K = vec3( 0.686, 0.678, 0.666 );',
// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K
'const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );',
// earth shadow hack
// cutoffAngle = pi / 1.95;
'const float cutoffAngle = 1.6110731556870734;',
'const float steepness = 1.5;',
'const float EE = 1000.0;',
'float sunIntensity( float zenithAngleCos ) {',
' zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );',
' return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );',
'}',
'vec3 totalMie( float T ) {',
' float c = ( 0.2 * T ) * 10E-18;',
' return 0.434 * c * MieConst;',
'}',
'void main() {',
' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );',
' vWorldPosition = worldPosition.xyz;',
' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
' gl_Position.z = gl_Position.w;', // set z to camera.far
' vSunDirection = normalize( sunPosition );',
' vSunE = sunIntensity( dot( vSunDirection, up ) );',
' vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );',
' float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );',
// extinction (absorbtion + out scattering)
// rayleigh coefficients
' vBetaR = totalRayleigh * rayleighCoefficient;',
// mie coefficients
' vBetaM = totalMie( turbidity ) * mieCoefficient;',
'}'
].join( '\n' ),
fragmentShader: [
'varying vec3 vWorldPosition;',
'varying vec3 vSunDirection;',
'varying float vSunfade;',
'varying vec3 vBetaR;',
'varying vec3 vBetaM;',
'varying float vSunE;',
'uniform float luminance;',
'uniform float mieDirectionalG;',
'const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );',
// constants for atmospheric scattering
'const float pi = 3.141592653589793238462643383279502884197169;',
'const float n = 1.0003;', // refractive index of air
'const float N = 2.545E25;', // number of molecules per unit volume for air at
// 288.15K and 1013mb (sea level -45 celsius)
// optical length at zenith for molecules
'const float rayleighZenithLength = 8.4E3;',
'const float mieZenithLength = 1.25E3;',
'const vec3 up = vec3( 0.0, 1.0, 0.0 );',
// 66 arc seconds -> degrees, and the cosine of that
'const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;',
// 3.0 / ( 16.0 * pi )
'const float THREE_OVER_SIXTEENPI = 0.05968310365946075;',
// 1.0 / ( 4.0 * pi )
'const float ONE_OVER_FOURPI = 0.07957747154594767;',
'float rayleighPhase( float cosTheta ) {',
' return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );',
'}',
'float hgPhase( float cosTheta, float g ) {',
' float g2 = pow( g, 2.0 );',
' float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );',
' return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );',
'}',
// Filmic ToneMapping http://filmicgames.com/archives/75
'const float A = 0.15;',
'const float B = 0.50;',
'const float C = 0.10;',
'const float D = 0.20;',
'const float E = 0.02;',
'const float F = 0.30;',
'const float whiteScale = 1.0748724675633854;', // 1.0 / Uncharted2Tonemap(1000.0)
'vec3 Uncharted2Tonemap( vec3 x ) {',
' return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;',
'}',
'void main() {',
// optical length
// cutoff angle at 90 to avoid singularity in next formula.
' float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );',
' float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );',
' float sR = rayleighZenithLength * inverse;',
' float sM = mieZenithLength * inverse;',
// combined extinction factor
' vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );',
// in scattering
' float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );',
' float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );',
' vec3 betaRTheta = vBetaR * rPhase;',
' float mPhase = hgPhase( cosTheta, mieDirectionalG );',
' vec3 betaMTheta = vBetaM * mPhase;',
' vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );',
' Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );',
// nightsky
' vec3 direction = normalize( vWorldPosition - cameraPos );',
' float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]',
' float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]',
' vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );',
' vec3 L0 = vec3( 0.1 ) * Fex;',
// composition + solar disc
' float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );',
' L0 += ( vSunE * 19000.0 * Fex ) * sundisk;',
' vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );',
' vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );',
' vec3 color = curr * whiteScale;',
' vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );',
' gl_FragColor = vec4( retColor, 1.0 );',
'}'
].join( '\n' )
};
Also see: Tab Triggers