Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div class="buttons">
	<span class="prev">previous</span> ~
	<span class="next">next</span>
</div>
              
            
!

CSS

              
                * {
	margin: 0;
	padding: 0;
}

body {
	overflow: hidden;
}
.buttons {
	position: absolute;
	top: 50%;
	transform: translateY(30vh);
	text-align: center;
	left: 0;
	width: 100%;
	font-size: 24px;
	font-family: Garamond, Baskerville, "Baskerville Old Face", "Hoefler Text",
		"Times New Roman", serif;
	font-size: 24px;
}
span {
	cursor: pointer;
}

              
            
!

JS

              
                const vertex = `float PI = 3.1415926535897932384626433;

vec3 mod289(vec3 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
     return mod289(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r){
  return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec3 v) { 
  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

	// First corner
  vec3 i  = floor(v + dot(v, C.yyy) );
  vec3 x0 =   v - i + dot(i, C.xxx) ;

	// Other corners
  vec3 g = step(x0.yzx, x0.xyz);
  vec3 l = 1.0 - g;
  vec3 i1 = min( g.xyz, l.zxy );
  vec3 i2 = max( g.xyz, l.zxy );

  //   x0 = x0 - 0.0 + 0.0 * C.xxx;
  //   x1 = x0 - i1  + 1.0 * C.xxx;
  //   x2 = x0 - i2  + 2.0 * C.xxx;
  //   x3 = x0 - 1.0 + 3.0 * C.xxx;
  vec3 x1 = x0 - i1 + C.xxx;
  vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
  vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

	// Permutations
  i = mod289(i); 
  vec4 p = permute( permute( permute( 
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) 
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

	// Gradients: 7x7 points over a square, mapped onto an octahedron.
	// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
  float n_ = 0.142857142857; // 1.0/7.0
  vec3  ns = n_ * D.wyz - D.xzx;

  vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

  vec4 x_ = floor(j * ns.z);
  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  vec4 x = x_ *ns.x + ns.yyyy;
  vec4 y = y_ *ns.x + ns.yyyy;
  vec4 h = 1.0 - abs(x) - abs(y);

  vec4 b0 = vec4( x.xy, y.xy );
  vec4 b1 = vec4( x.zw, y.zw );

  //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
  //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
  vec4 s0 = floor(b0)*2.0 + 1.0;
  vec4 s1 = floor(b1)*2.0 + 1.0;
  vec4 sh = -step(h, vec4(0.0));

  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  vec3 p0 = vec3(a0.xy,h.x);
  vec3 p1 = vec3(a0.zw,h.y);
  vec3 p2 = vec3(a1.xy,h.z);
  vec3 p3 = vec3(a1.zw,h.w);

	//Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

	// Mix final noise value
  vec4 m = max(0.5 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
  m = m * m;
  return 105.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), 
                                dot(p2,x2), dot(p3,x3) ) );
}
uniform vec3 p1v;
uniform vec3 p1c;
uniform vec3 p2v;
uniform vec3 p2c;
uniform vec3 p3v;
uniform vec3 p3c;
uniform vec3 p4v;
uniform vec3 p4c;
uniform vec3 p5v;
uniform vec3 p5c;
uniform vec3 p6v;
uniform vec3 p6c;
uniform vec3 p7v;
uniform vec3 p7c;
uniform vec3 p8v;
uniform vec3 p8c;
uniform vec3 p9v;
uniform vec3 p9c;
uniform vec3 p10v;
uniform vec3 p10c;
uniform vec3 p11v;
uniform vec3 p11c;
uniform vec3 p12v;
uniform vec3 p12c;
uniform vec3 p13v;
uniform vec3 p13c;
uniform vec3 p14v;
uniform vec3 p14c;
uniform vec3 p15v;
uniform vec3 p15c;
uniform vec3 p16v;
uniform vec3 p16c;
uniform vec3 p17v;
uniform vec3 p17c;
uniform vec3 p18v;
uniform vec3 p18c;
uniform vec3 p19v;
uniform vec3 p19c;
uniform vec3 p20v;
uniform vec3 p20c;

uniform float pointCount;
uniform float progress;

uniform float w;
uniform float h;

attribute vec3 aCoordinates;
varying vec2 vCoordinates;
varying vec3 vMvm;
varying vec3 vPos;
varying float delayedProgress;

void main() {
  // voronoi
  float shortest = max(w,h) + 1.;
  vec3 color = vec3(0.,0.,0.);
  vec3 closest = vec3(0.,0.,0.);
  float d = 0.;
  d = distance(p1v,position); if ( d < shortest) { shortest = d; closest = p1v; color = p1c; }
  d = distance(p2v,position); if ( d < shortest) { shortest = d; closest = p2v; color = p2c; }
  d = distance(p3v,position); if ( d < shortest) { shortest = d; closest = p3v; color = p3c; }
  d = distance(p4v,position); if ( d < shortest) { shortest = d; closest = p4v; color = p4c; }
  d = distance(p5v,position); if ( d < shortest) { shortest = d; closest = p5v; color = p5c; }
  d = distance(p6v,position); if ( d < shortest) { shortest = d; closest = p6v; color = p6c; }
  d = distance(p7v,position); if ( d < shortest) { shortest = d; closest = p7v; color = p7c; }
  d = distance(p8v,position); if ( d < shortest) { shortest = d; closest = p8v; color = p8c; }
  d = distance(p9v,position); if ( d < shortest) { shortest = d; closest = p9v; color = p9c; }
  d = distance(p10v,position); if ( d < shortest) { shortest = d; closest = p10v; color = p10c; }
  d = distance(p11v,position); if ( d < shortest) { shortest = d; closest = p11v; color = p11c; }
  d = distance(p12v,position); if ( d < shortest) { shortest = d; closest = p12v; color = p12c; }
  d = distance(p13v,position); if ( d < shortest) { shortest = d; closest = p13v; color = p13c; }
  d = distance(p14v,position); if ( d < shortest) { shortest = d; closest = p14v; color = p14c; }
  d = distance(p15v,position); if ( d < shortest) { shortest = d; closest = p15v; color = p15c; }
  d = distance(p16v,position); if ( d < shortest) { shortest = d; closest = p16v; color = p16c; }
  d = distance(p17v,position); if ( d < shortest) { shortest = d; closest = p17v; color = p17c; }
  d = distance(p18v,position); if ( d < shortest) { shortest = d; closest = p18v; color = p18c; }
  d = distance(p19v,position); if ( d < shortest) { shortest = d; closest = p19v; color = p19c; }
  d = distance(p20v,position); if ( d < shortest) { shortest = d; closest = p20v; color = p20c; }
  
  float xPos = ((aCoordinates.x/w)*2.)-1.;
  vCoordinates = aCoordinates.xy;
  vMvm = vec3(xPos, aCoordinates.y/h,0.);
  vPos = position;

  float dir = color.x > .5 ? -1. :1.;

  float progressPerc = progress/100.;
  float lowerBound = color.r *.5;
  float upperBound = 1. - (color.g * .5);
  delayedProgress = smoothstep(lowerBound, upperBound, progressPerc);
  float leverProgress = 1. - abs((delayedProgress -.5)*2.);

  vec3 newPos = position;
  float dst = distance(closest, newPos);

  float a =newPos.y- closest.y;
  float b =newPos.x- closest.x;
  
  float angle =atan(a , b);
  angle += PI*2. * delayedProgress;

  float x = cos(angle) * dst;
  float y = sin(angle) * dst;

  newPos.x = closest.x + x;
  newPos.z = newPos.z + (closest.z + y)*leverProgress + (500. * leverProgress * dir);

	vec4 mvPosition = modelViewMatrix * vec4(newPos, 1.);
	gl_PointSize = 2000.*(1./-mvPosition.z);
	gl_Position = projectionMatrix * mvPosition;
}`;
const fragment = `
uniform float pointCount;
uniform float progress;

uniform float w;
uniform float h;
varying vec2 vCoordinates;

uniform sampler2D currentImg;
uniform sampler2D nextImg;
varying vec3 vMvm;
varying vec3 vPos;
varying float delayedProgress;

void main() {
  vec2 imgUv = vec2(vCoordinates.x/w,vCoordinates.y/h);
  vec4 current = texture2D(currentImg,imgUv);
  vec4 next = texture2D(nextImg,imgUv);
  vec4 image = mix(current, next, delayedProgress);

	gl_FragColor = image;
}`;
const img1 = "https://assets.codepen.io/5946/stair1.jpg"; // https://unsplash.com/photos/w6OniVDCfn0
const img2 = "https://assets.codepen.io/5946/stair2.jpg"; // https://unsplash.com/photos/cfQEO_1S0Rs
const img3 = "https://assets.codepen.io/5946/stair3.jpg"; // https://unsplash.com/photos/tb4heMa-ZRo

class Sketch {
	constructor() {
		this.imgs = [];
		this.paths = [img1, img2, img3];
		this.camera;
		this.scene;
		this.renderer;
		this.progress = { progress: 0 };
		this.active = 0;
		this.pointCount = 20;
		this.colorsBG = ["#ddf4f0", "#e4e2ee", "#cbdac3"];
		this.colorsText = ["#8a3738", "#840c02", "#444"];

		this.loadImages();
	}
	init() {
		this.scene = new THREE.Scene();
		// this.scene.background = new THREE.Color(0xffffff, 0);

		this.addRenderer();
		this.addCamera();
		this.addLights();
		this.addObjects();
		this.addEvents();

		document.body.appendChild(this.renderer.domElement);

		document.body.style.backgroundColor = this.colorsBG[0];
		document.body.style.color = this.colorsText[0];

		this.animate();
	}
	loadImages() {
		this.paths.forEach(
			function (path) {
				let img = new Image();
				img.onload = () => {
					this.imgs.push(img);
					if (this.imgs.length == this.paths.length) this.imgsReady();
				};
				img.src = path;
			}.bind(this)
		);
	}
	imgsReady() {
		this.init();
	}
	addObjects() {
		// this.geo = new THREE.PlaneBufferGeometry(1000, 1000, 100, 100);
		this.geo = new THREE.BufferGeometry();
		this.w = this.imgs[1].naturalWidth;
		this.h = this.imgs[1].naturalHeight;
		this.particleCount = this.w * this.h;

		this.textures = [
			// new THREE.TextureLoader().load(mask),
			new THREE.TextureLoader().load(img1),
			new THREE.TextureLoader().load(img2),
			new THREE.TextureLoader().load(img3)
		];

		this.positions = new THREE.BufferAttribute(
			new Float32Array(this.particleCount * 3),
			3
		);
		this.coordinates = new THREE.BufferAttribute(
			new Float32Array(this.particleCount * 3),
			3
		);
		let index = 0;
		for (let i = 0; i < this.w; i++) {
			for (let j = 0; j < this.h; j++) {
				this.positions.setXYZ(index, i - this.w / 2, j - this.h / 2, 0);
				this.coordinates.setXYZ(index, i, j, 0);
				index++;
			}
		}
		this.geo.setAttribute("position", this.positions);
		this.geo.setAttribute("aCoordinates", this.coordinates);
		let points = [];
		let colors = [];

		for (let i = 1; i <= this.pointCount; i++) {
			points.push(
				new THREE.Vector3(
					Math.round(this.w * Math.random()),
					Math.round(this.h * Math.random()),
					0
				)
			);
			colors.push(new THREE.Vector3(Math.random(), Math.random(), Math.random()));
		}

		this.mat = new THREE.ShaderMaterial({
			side: THREE.DoubleSide,
			transparent: true,
			depthTest: false,
			depthWrite: false,
			uniforms: {
				progress: { value: this.progress.progress },
				w: { value: this.w },
				h: { value: this.h },
				pointCount: { value: this.pointCount },
				currentImg: { value: this.textures[this.active % 3] },
				nextImg: { value: this.textures[(this.active + 1) % 3] }
			},
			vertexShader: vertex,
			fragmentShader: fragment
		});
		for (let i = 1; i <= 20; i++) {
			this.mat.uniforms[`p${i}v`] = { value: this.randomVoronoiVector() };
			this.mat.uniforms[`p${i}c`] = { value: this.random3DVector() };
			this.mat.uniforms[`p${i}a`] = { value: this.random3DDirectionalVector() };
		}
		this.mesh = new THREE.Points(this.geo, this.mat);
		this.scene.add(this.mesh);
	}
	moveVoronoiVectors() {
		for (let i = 1; i <= 20; i++) {
			let item = this.mesh.material.uniforms[`p${i}v`].value;
			let acc = this.mesh.material.uniforms[`p${i}a`].value;

			item.x += acc.x;
			item.y += acc.y;

			if (item.x <= -this.w / 2) {
				item.x = -this.w / 2;
				acc.x *= -1;
			}
			if (item.x >= this.w / 2) {
				item.x = this.w / 2;
				acc.x *= -1;
			}
			if (item.y <= -this.h / 2) {
				item.y = -this.h / 2;
				acc.y *= -1;
			}
			if (item.y >= this.h / 2) {
				item.y = this.h / 2;
				acc.y *= -1;
			}
		}
	}
	randomVoronoiVector() {
		return new THREE.Vector3(
			Math.round(this.w * Math.random() - this.w * 0.5),
			Math.round(this.h * Math.random() - this.h * 0.5),
			0
		);
	}
	random3DVector() {
		return new THREE.Vector3(Math.random(), Math.random(), Math.random());
	}
	random3DDirectionalVector() {
		let v = new THREE.Vector3(
			Math.random() * 30 * Math.random() < 0.5 ? 1 : -1,
			Math.random() * 30 * Math.random() < 0.5 ? 1 : -1,
			Math.random()
		);
		return v;
	}
	addRenderer() {
		this.renderer = new THREE.WebGLRenderer({ antialias: true, alpha: true });
		this.renderer.setSize(window.innerWidth, window.innerHeight);
		this.renderer.shadowMap.enabled = true;
	}
	addCamera() {
		this.camera = new THREE.PerspectiveCamera(
			45,
			window.innerWidth / window.innerHeight,
			0.1,
			6000
		);
		this.camera.position.x = 0;
		this.camera.position.y = 0;
		// this.camera.position.z = (1 - window.innerWidth / 1600) * 25;
		this.camera.position.z = 1000;
		this.scene.add(this.camera);
	}
	addLights() {
		let ambLight = new THREE.AmbientLight(0xffffff, 0.7, 100);
		this.scene.add(ambLight);

		let dirLight = new THREE.DirectionalLight(0xffffff, 1, 100);
		dirLight.position.set(-3, 5, -3);
		this.scene.add(dirLight);
	}
	choose(current, next) {
		current = current % 3;
		next = next % 3;
		this.mesh.material.uniforms.currentImg.value = this.textures[current];
		this.mesh.material.uniforms.nextImg.value = this.textures[next];
		gsap.fromTo(
			this.progress,
			{ progress: 0 },
			{ progress: 100, duration: 2, ease: "power1.inOut" }
		);
		gsap.fromTo(
			"body",
			{
				backgroundColor: this.colorsBG[current],
				color: this.colorsText[current]
			},
			{
				backgroundColor: this.colorsBG[next],
				color: this.colorsText[next],
				duration: 1.5,
				delay: 1,
				ease: "power4.inOut"
			}
		);
	}
	choosePrev() {
		let current = this.active;
		let next;
		if (this.active == 0) this.active = 3;
		this.active--;
		next = this.active;
		this.choose(current, next);
	}
	chooseNext() {
		let current = this.active;
		let next;
		this.active++;
		next = this.active;

		this.choose(current, next);
	}
	addEvents() {
		window.addEventListener("resize", this.onWindowResize.bind(this), false);
	}
	onWindowResize() {
		this.camera.aspect = window.innerWidth / window.innerHeight;
		this.camera.updateProjectionMatrix();
		this.renderer.setSize(window.innerWidth, window.innerHeight);
	}
	render() {
		this.renderer.render(this.scene, this.camera);
	}
	animate() {
		requestAnimationFrame(this.animate.bind(this));
		this.moveVoronoiVectors();
		this.mesh.material.uniforms.progress.value = this.progress.progress;
		this.render();
	}
}

let sketch = new Sketch();

document.querySelector(".prev").addEventListener("click", () => {
	sketch.choosePrev();
});
document.querySelector(".next").addEventListener("click", () => {
	sketch.chooseNext();
});

              
            
!
999px

Console