<script language="javascript" type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.7.3/p5.js"></script>
body {margin:0px; padding:0px; overflow: hidden}
let program;
let cnt = 0;
function setup() {
pixelDensity(1);
const canvas = createCanvas(windowWidth, windowHeight,WEBGL);
rectMode(CENTER);
noStroke();
fill(1);
program = createShader(vert,frag);
}
function draw() {
const ang = (cnt ++) / 180 * PI;
const lightPos = [cos(ang), 0, sin(ang)];
shader(program);
background(0);
program.setUniform('res',[width,height]);
program.setUniform('lightPos', lightPos);
program.setUniform('roughness', 0);
rect(0,0,width,height);
}
const vert=`
#ifdef GL_ES
precision highp float;
precision highp int;
#endif
#extension GL_OES_standard_derivatives : enable
attribute vec3 aPosition;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
uniform mat3 uNormalMatrix;
void main() {
gl_Position = uProjectionMatrix * uModelViewMatrix * vec4(aPosition, 1.0);
}`;
const frag=`
#ifdef GL_ES
precision highp float;
#endif
// https://learnopengl.com/PBR/Theory
#define PI 3.14159265358979323846
uniform vec2 res;
uniform vec3 lightPos;
uniform float roughness;
uniform float metallic;
vec3 env(vec3 dir) {
vec3 crd = vec3(0.5) + normalize(dir) * 0.5;
vec3 sky = vec3(0.5, 0.7, 1.0);
vec3 sky2 = vec3(0.7, 0.3, 0.0);
vec3 water = vec3(0.1, 0.3, 0.4);
vec3 color = mix(water, sky2,
smoothstep(0.4, 0.5, crd.y));
color = mix(color, sky,
smoothstep(0.3, 0.9, crd.y));
float th = 0.1;
color.rgb += (smoothstep(0.0, th, abs(dir.y)) - 1.0) * 0.2;
float l = pow(max(0.0, dot(dir, lightPos)), 24.0);
color += vec3(1.0, 0.8, 0.6) * l;
color = pow(color.rgb, vec3(2.2));
return clamp(color, vec3(0.0), vec3(1.0));
}
vec3 env2(vec3 dir) {
vec3 color = vec3(0.0);
float l = pow(max(0.0, dot(dir, lightPos)), 128.0);
color += vec3(1.0) * l * 16.0;
color = pow(color.rgb, vec3(2.2));
return clamp(color, vec3(0.0), vec3(1.0));
}
float GeometrySchlickGGX(float NdotV, float roughness) {
float a = roughness;
float k = (a * a) / 2.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
float VanDerCorput(int n, int base)
{
float invBase = 1.0 / float(base);
float denom = 1.0;
float result = 0.0;
for(int i = 0; i < 32; ++i)
{
if(n > 0)
{
denom = mod(float(n), 2.0);
result += denom * invBase;
invBase = invBase / 2.0;
n = int(float(n) / 2.0);
}
}
return result;
}
vec2 Hammersley(int i, int N) {
return vec2(float(i) / float(N), VanDerCorput(i, 2));
}
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// from spherical coordinates to cartesian coordinates
vec3 H;
H.x = cos(phi) * sinTheta;
H.y = sin(phi) * sinTheta;
H.z = cosTheta;
// from tangent-space vector to world-space sample vector
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
return normalize(sampleVec);
}
vec3 reflectionConv(vec3 V, vec3 N) {
float totalWeight = 0.0;
vec3 conv = vec3(0.0);
const int SAMPLE_COUNT = 128;
for(int i = 0; i < SAMPLE_COUNT; ++i)
{
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
vec3 L = normalize(2.0 * dot(V, H) * H - V);
float NdotL = max(dot(N, L), 0.0);
if(NdotL > 0.0)
{
if (gl_FragCoord.x / res.x > 0.5) {
conv += env(L) * NdotL;
} else {
conv += env2(L) * NdotL;
}
totalWeight += NdotL;
}
}
conv = conv / totalWeight;
return conv;
}
vec2 IntegrateBRDF(float NdotV, float roughness)
{
vec3 V;
V.x = sqrt(1.0 - NdotV*NdotV);
V.y = 0.0;
V.z = NdotV;
float A = 0.0;
float B = 0.0;
vec3 N = vec3(0.0, 0.0, 1.0);
const int SAMPLE_COUNT = 64;
for(int i = 0; i < SAMPLE_COUNT; ++i)
{
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
vec3 L = normalize(2.0 * dot(V, H) * H - V);
float NdotL = max(L.z, 0.0);
float NdotH = max(H.z, 0.0);
float VdotH = max(dot(V, H), 0.0);
if(NdotL > 0.0)
{
float G = GeometrySmith(N, V, L, roughness);
float G_Vis = (G * VdotH) / (NdotH * NdotV);
float Fc = pow(1.0 - VdotH, 5.0);
/*
A += (1.0 - Fc) * G_Vis;
B += Fc * G_Vis;
*/
//A += G;
B += Fc;
}
}
A /= float(SAMPLE_COUNT);
B /= float(SAMPLE_COUNT);
return vec2(A, B);
}
vec3 fresnelSchlick(float cosTheta, vec3 F0) {
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness) {
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(clamp(1.0 - cosTheta, 0.0, 1.0), 5.0);
}
float DistributionGGX(vec3 N, vec3 H, float a)
{
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / denom;
}
vec4 shade(vec3 V, vec3 P, vec3 N) {
vec3 goldBaseColor = vec3(1.00);
vec3 baseColor = goldBaseColor;
vec3 F0 = baseColor;
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
vec3 reflectionConvColor = reflectionConv(V, N);
vec2 envBRDF = IntegrateBRDF(dot(V, N), roughness);
vec3 specular = reflectionConvColor * (F * envBRDF.x + envBRDF.y);
vec4 color = vec4(specular, 1.0);
return color;
}
float SDF(vec3 p) {
float radius = 0.25;
return length(p)-radius;
}
vec3 normal(vec3 P) {
vec2 h = vec2(0.001, 0.0);
return normalize(vec3(SDF(P + h.xyy) - SDF(P - h.xyy),
SDF(P + h.yxy) - SDF(P - h.yxy),
SDF(P + h.yyx) - SDF(P - h.yyx)));
}
float rayHitDist(vec3 eye, vec3 rayDir) {
float dist = 0.0;
float threshold = 0.005;
for(int i = 0 ; i < 16 ; ++i) {
float d = SDF(eye + rayDir * dist);
if(d < threshold) { return dist; }
dist += d;
}
return -1.0;
}
void main(void)
{
vec2 crd = (gl_FragCoord.xy - res * 0.5) / min(res.x, res.y);
vec3 eye = vec3(0.0, 0.0, -2.5);
vec3 V = normalize(eye - vec3(crd, 0.0));
float dist = rayHitDist(eye, -V);
vec4 color = vec4(env(-V), 1.0);
if (crd.x < 0.0) {
color = vec4(env2(-V), 1.0);
}
if (dist >= 0.0) {
vec3 P = eye - V * dist;
vec3 N = normal(P);
color = mix(color, shade(V, P, N), smoothstep(0.0, 0.1, dot(V, N)));
}
color.rgb = pow(color.rgb, vec3(1.0/2.2));
gl_FragColor = color;
}`;
This Pen doesn't use any external CSS resources.
This Pen doesn't use any external JavaScript resources.