HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="container"></div>
<script id="vertex-shader" type="no-js">
void main() {
gl_Position = vec4( position, 1.0 );
}
</script>
<script id="fragment-shader" type="no-js">
uniform float iGlobalTime;
uniform vec2 iResolution;
const int NUM_STEPS = 8;
const float PI = 3.1415;
const float EPSILON = 1e-3;
float EPSILON_NRM = 0.1 / iResolution.x;
// sea variables
const int ITER_GEOMETRY = 3;
const int ITER_FRAGMENT = 5;
const float SEA_HEIGHT = 0.6;
const float SEA_CHOPPY = 1.0;
const float SEA_SPEED = 1.0;
const float SEA_FREQ = 0.16;
const vec3 SEA_BASE = vec3(0.1,0.19,0.22);
const vec3 SEA_WATER_COLOR = vec3(0.8,0.9,0.6);
float SEA_TIME = iGlobalTime * SEA_SPEED;
mat2 octave_m = mat2(1.6,1.2,-1.2,1.6);
mat3 fromEuler(vec3 ang) {
vec2 a1 = vec2(sin(ang.x),cos(ang.x));
vec2 a2 = vec2(sin(ang.y),cos(ang.y));
vec2 a3 = vec2(sin(ang.z),cos(ang.z));
mat3 m;
m[0] = vec3(
a1.y*a3.y+a1.x*a2.x*a3.x,
a1.y*a2.x*a3.x+a3.y*a1.x,
-a2.y*a3.x
);
m[1] = vec3(-a2.y*a1.x,a1.y*a2.y,a2.x);
m[2] = vec3(
a3.y*a1.x*a2.x+a1.y*a3.x,
a1.x*a3.x-a1.y*a3.y*a2.x,
a2.y*a3.y
);
return m;
}
float hash( vec2 p ) {
float h = dot(p,vec2(127.1,311.7));
return fract(sin(h)*43758.5453123);
}
float noise( in vec2 p ) {
vec2 i = floor(p);
vec2 f = fract(p);
vec2 u = f * f * (3.0 - 2.0 * f);
return -1.0 + 2.0 * mix(
mix(
hash(i + vec2(0.0,0.0)
),
hash(i + vec2(1.0,0.0)), u.x),
mix(hash(i + vec2(0.0,1.0) ),
hash(i + vec2(1.0,1.0) ), u.x),
u.y
);
}
float diffuse(vec3 n,vec3 l,float p) {
return pow(dot(n,l) * 0.4 + 0.6,p);
}
float specular(vec3 n,vec3 l,vec3 e,float s) {
float nrm = (s + 8.0) / (3.1415 * 8.0);
return pow(max(dot(reflect(e,n),l),0.0),s) * nrm;
}
vec3 getSkyColor(vec3 e) {
e.y = max(e.y, 0.0);
vec3 ret;
ret.x = pow(1.0 - e.y, 2.0);
ret.y = 1.0 - e.y;
ret.z = 0.6+(1.0 - e.y) * 0.4;
return ret;
}
float sea_octave(vec2 uv, float choppy) {
uv += noise(uv);
vec2 wv = 1.0 - abs(sin(uv));
vec2 swv = abs(cos(uv));
wv = mix(wv, swv, wv);
return pow(1.0 - pow(wv.x * wv.y, 0.65), choppy);
}
float map(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz;
uv.x *= 0.75;
float d, h = 0.0;
for(int i = 0; i < ITER_GEOMETRY; i++) {
d = sea_octave((uv + SEA_TIME) * freq, choppy);
d += sea_octave((uv - SEA_TIME) * freq, choppy);
h += d * amp;
uv *= octave_m;
freq *= 1.9;
amp *= 0.22;
choppy = mix(choppy, 1.0, 0.2);
}
return p.y - h;
}
float map_detailed(vec3 p) {
float freq = SEA_FREQ;
float amp = SEA_HEIGHT;
float choppy = SEA_CHOPPY;
vec2 uv = p.xz;
uv.x *= 0.75;
float d, h = 0.0;
for(int i = 0; i < ITER_FRAGMENT; i++) {
d = sea_octave((uv+SEA_TIME) * freq, choppy);
d += sea_octave((uv-SEA_TIME) * freq, choppy);
h += d * amp;
uv *= octave_m;
freq *= 1.9;
amp *= 0.22;
choppy = mix(choppy,1.0,0.2);
}
return p.y - h;
}
vec3 getSeaColor(
vec3 p,
vec3 n,
vec3 l,
vec3 eye,
vec3 dist
) {
float fresnel = 1.0 - max(dot(n,-eye),0.0);
fresnel = pow(fresnel,3.0) * 0.65;
vec3 reflected = getSkyColor(reflect(eye,n));
vec3 refracted = SEA_BASE + diffuse(n,l,80.0) * SEA_WATER_COLOR * 0.12;
vec3 color = mix(refracted,reflected,fresnel);
float atten = max(1.0 - dot(dist,dist) * 0.001, 0.0);
color += SEA_WATER_COLOR * (p.y - SEA_HEIGHT) * 0.18 * atten;
color += vec3(specular(n,l,eye,60.0));
return color;
}
// tracing
vec3 getNormal(vec3 p, float eps) {
vec3 n;
n.y = map_detailed(p);
n.x = map_detailed(vec3(p.x+eps,p.y,p.z)) - n.y;
n.z = map_detailed(vec3(p.x,p.y,p.z+eps)) - n.y;
n.y = eps;
return normalize(n);
}
float heightMapTracing(vec3 ori, vec3 dir, out vec3 p) {
float tm = 0.0;
float tx = 1000.0;
float hx = map(ori + dir * tx);
if(hx > 0.0) {
return tx;
}
float hm = map(ori + dir * tm);
float tmid = 0.0;
for(int i = 0; i < NUM_STEPS; i++) {
tmid = mix(tm,tx, hm/(hm-hx));
p = ori + dir * tmid;
float hmid = map(p);
if(hmid < 0.0) {
tx = tmid;
hx = hmid;
} else {
tm = tmid;
hm = hmid;
}
}
return tmid;
}
void main() {
vec2 uv = gl_FragCoord.xy / iResolution.xy;
uv = uv * 2.0 - 1.0;
uv.x *= iResolution.x / iResolution.y;
float time = iGlobalTime * 0.3;
// ray
vec3 ang = vec3(
sin(time*3.0)*0.1,sin(time)*0.2+0.3,time
);
vec3 ori = vec3(0.0,3.5,time*5.0);
vec3 dir = normalize(
vec3(uv.xy,-2.0)
);
dir.z += length(uv) * 0.15;
dir = normalize(dir);
// tracing
vec3 p;
heightMapTracing(ori,dir,p);
vec3 dist = p - ori;
vec3 n = getNormal(
p,
dot(dist,dist) * EPSILON_NRM
);
vec3 light = normalize(vec3(0.0,1.0,0.8));
// color
vec3 color = mix(
getSkyColor(dir),
getSeaColor(p,n,light,dir,dist),
pow(smoothstep(0.0,-0.05,dir.y),0.3)
);
// post
gl_FragColor = vec4(pow(color,vec3(0.75)), 1.0);
}
</script>
body {
overflow: hidden;
margin: 0;
}
var container,
renderer,
scene,
camera,
mesh,
start = Date.now(),
fov = 30;
var clock = new THREE.Clock();
var timeUniform = {
iGlobalTime: {
type: 'f',
value: 0.1
},
iResolution: {
type: 'v2',
value: new THREE.Vector2()
}
};
timeUniform.iResolution.value.x = window.innerWidth;
timeUniform.iResolution.value.y = window.innerHeight;
window.addEventListener('load', function() {
container = document.getElementById('container');
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(
fov,
window.innerWidth / window.innerHeight,
1,
10000
);
camera.position.x = 20;
camera.position.y = 10;
camera.position.z = 20;
camera.lookAt(scene.position);
scene.add(camera);
var axis = new THREE.AxisHelper(10);
scene.add (axis);
material = new THREE.ShaderMaterial({
uniforms: timeUniform,
vertexShader: document.getElementById('vertex-shader').textContent,
fragmentShader: document.getElementById('fragment-shader').textContent
});
var water = new THREE.Mesh(
new THREE.PlaneBufferGeometry(window.innerWidth, window.innerHeight, 40), material
);
scene.add(water);
var geometry = new THREE.SphereGeometry( 10, 32, 32 );
var material = new THREE.MeshBasicMaterial( {color: 0xffff00} );
var sphere = new THREE.Mesh( geometry, material );
scene.add( sphere );
renderer = new THREE.WebGLRenderer();
renderer.setSize( window.innerWidth, window.innerHeight );
container.appendChild( renderer.domElement );
render();
});
window.addEventListener('resize',function() {
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
renderer.setSize(window.innerWidth, window.innerHeight);
});
function render() {
timeUniform.iGlobalTime.value += clock.getDelta();
renderer.render(scene, camera);
requestAnimationFrame(render);
}
Also see: Tab Triggers