Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
<canvas id="c"></canvas>

<script id="shader-fs" type="x-shader/x-fragment">
				#ifdef GL_ES
				  precision highp float;
				  #endif
    		void main(void) {
    		 gl_FragColor = vec4(0.2, 0.3, 0.4, 1.0);
    		}
		</script>

  <script id="shader-vs" type="x-shader/x-vertex">
    	attribute vec3 vertexPosition;

  	uniform mat4 modelViewMatrix;
  	uniform mat4 perspectiveMatrix;

   	void main(void) {
  		gl_Position = perspectiveMatrix * modelViewMatrix * vec4(  vertexPosition, 1.0);
  	}
  </script>
  
              
            
!

CSS

              
                @import "compass/css3";

@import "compass/reset";
@import "compass/css3";

body{
  overflow: hidden;
}

canvas{
  width: 100%;
  height: 100%;
}
              
            
!

JS

              
                window.onload = loadScene;

var canvas, gl,
  ratio,
  vertices,
  velocities,
  freqArr,
  cw,
  ch,
  colorLoc,
  thetaArr,
  velThetaArr,
  velRadArr,
  boldRateArr,
  drawType,
  numLines = 40000;
var target = [];
var randomTargetXArr = [], randomTargetYArr = [];
drawType = 2;


/**
 * Initialises WebGL and creates the 3D scene.
 */
function loadScene() {
  //    Get the canvas element
  canvas = document.getElementById("c");
  //    Get the WebGL context
  gl = canvas.getContext("experimental-webgl");
  //    Check whether the WebGL context is available or not
  //    if it's not available exit
  if (!gl) {
    alert("There's no WebGL context available.");
    return;
  }
  //    Set the viewport to the canvas width and height
  cw = window.innerWidth;
  ch = window.innerHeight;
  canvas.width = cw;
  canvas.height = ch;
  gl.viewport(0, 0, canvas.width, canvas.height);

  //    Load the vertex shader that's defined in a separate script
  //    block at the top of this page.
  //    More info about shaders: http://en.wikipedia.org/wiki/Shader_Model
  //    More info about GLSL: http://en.wikipedia.org/wiki/GLSL
  //    More info about vertex shaders: http://en.wikipedia.org/wiki/Vertex_shader

  //    Grab the script element
  var vertexShaderScript = document.getElementById("shader-vs");
  var vertexShader = gl.createShader(gl.VERTEX_SHADER);
  gl.shaderSource(vertexShader, vertexShaderScript.text);
  gl.compileShader(vertexShader);
  if (!gl.getShaderParameter(vertexShader, gl.COMPILE_STATUS)) {
    alert("Couldn't compile the vertex shader");
    gl.deleteShader(vertexShader);
    return;
  }

  //    Load the fragment shader that's defined in a separate script
  //    More info about fragment shaders: http://en.wikipedia.org/wiki/Fragment_shader
  var fragmentShaderScript = document.getElementById("shader-fs");
  var fragmentShader = gl.createShader(gl.FRAGMENT_SHADER);
  gl.shaderSource(fragmentShader, fragmentShaderScript.text);
  gl.compileShader(fragmentShader);
  if (!gl.getShaderParameter(fragmentShader, gl.COMPILE_STATUS)) {
    alert("Couldn't compile the fragment shader");
    gl.deleteShader(fragmentShader);
    return;
  }

  //    Create a shader program.
  gl.program = gl.createProgram();
  gl.attachShader(gl.program, vertexShader);
  gl.attachShader(gl.program, fragmentShader);
  gl.linkProgram(gl.program);
  if (!gl.getProgramParameter(gl.program, gl.LINK_STATUS)) {
    alert("Unable to initialise shaders");
    gl.deleteProgram(gl.program);
    gl.deleteProgram(vertexShader);
    gl.deleteProgram(fragmentShader);
    return;
  }
  //    Install the program as part of the current rendering state
  gl.useProgram(gl.program);
  //    Get the vertexPosition attribute from the linked shader program
  var vertexPosition = gl.getAttribLocation(gl.program, "vertexPosition");
  //    Enable the vertexPosition vertex attribute array. If enabled, the array
  //    will be accessed an used for rendering when calls are made to commands like
  //    gl.drawArrays, gl.drawElements, etc.
  gl.enableVertexAttribArray(vertexPosition);

  //    Clear the color buffer (r, g, b, a) with the specified color
  gl.clearColor(0.0, 0.0, 0.0, 1.0);
  //    Clear the depth buffer. The value specified is clamped to the range [0,1].
  //    More info about depth buffers: http://en.wikipedia.org/wiki/Depth_buffer
  gl.clearDepth(1.0);
  //    Enable depth testing. This is a technique used for hidden surface removal.
  //    It assigns a value (z) to each pixel that represents the distance from this
  //    pixel to the viewer. When another pixel is drawn at the same location the z
  //    values are compared in order to determine which pixel should be drawn.
  //gl.enable(gl.DEPTH_TEST);

  gl.enable(gl.BLEND);
  gl.disable(gl.DEPTH_TEST);
  gl.blendFunc(gl.SRC_ALPHA, gl.ONE);

  //    Specify which function to use for depth buffer comparisons. It compares the
  //    value of the incoming pixel against the one stored in the depth buffer.
  //    Possible values are (from the OpenGL documentation):
  //    GL_NEVER - Never passes.
  //    GL_LESS - Passes if the incoming depth value is less than the stored depth value.
  //    GL_EQUAL - Passes if the incoming depth value is equal to the stored depth value.
  //    GL_LEQUAL - Passes if the incoming depth value is less than or equal to the stored depth value.
  //    GL_GREATER - Passes if the incoming depth value is greater than the stored depth value.
  //    GL_NOTEQUAL - Passes if the incoming depth value is not equal to the stored depth value.
  //    GL_GEQUAL - Passes if the incoming depth value is greater than or equal to the stored depth value.
  //    GL_ALWAYS - Always passes.
  //gl.depthFunc(gl.LEQUAL);

  //    Now create a shape.
  //    First create a vertex buffer in which we can store our data.
  var vertexBuffer = gl.createBuffer();
  //    Bind the buffer object to the ARRAY_BUFFER target.
  gl.bindBuffer(gl.ARRAY_BUFFER, vertexBuffer);
  //    Specify the vertex positions (x, y, z)

  // ------------------

  setup();

  // ------------------


  vertices = new Float32Array(vertices);
  velocities = new Float32Array(velocities);

  thetaArr = new Float32Array(thetaArr);
  velThetaArr = new Float32Array(velThetaArr);
  velRadArr = new Float32Array(velRadArr);


  //    Creates a new data store for the vertices array which is bound to the ARRAY_BUFFER.
  //    The third paramater indicates the usage pattern of the data store. Possible values are
  //    (from the OpenGL documentation):
  //    The frequency of access may be one of these:
  //    STREAM - The data store contents will be modified once and used at most a few times.
  //    STATIC - The data store contents will be modified once and used many times.
  //    DYNAMIC - The data store contents will be modified repeatedly and used many times.
  //    The nature of access may be one of these:
  //    DRAW - The data store contents are modified by the application, and used as the source for
  //           GL drawing and image specification commands.
  //    READ - The data store contents are modified by reading data from the GL, and used to return
  //           that data when queried by the application.
  //    COPY - The data store contents are modified by reading data from the GL, and used as the source
  //           for GL drawing and image specification commands.
  gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.DYNAMIC_DRAW);

  //    Clear the color buffer and the depth buffer
  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  //    Define the viewing frustum parameters
  //    More info: http://en.wikipedia.org/wiki/Viewing_frustum
  //    More info: https://knol.google.com/k/view-frustum
  var fieldOfView = 30.0;
  var aspectRatio = canvas.width / canvas.height;
  var nearPlane = 1.0;
  var farPlane = 10000.0;
  var top = nearPlane * Math.tan(fieldOfView * Math.PI / 360.0);
  var bottom = -top;
  var right = top * aspectRatio;
  var left = -right;

  //     Create the perspective matrix. The OpenGL function that's normally used for this,
  //     glFrustum() is not included in the WebGL API. That's why we have to do it manually here.
  //     More info: http://www.cs.utk.edu/~vose/c-stuff/opengl/glFrustum.html
  var a = (right + left) / (right - left);
  var b = (top + bottom) / (top - bottom);
  var c = (farPlane + nearPlane) / (farPlane - nearPlane);
  var d = (2 * farPlane * nearPlane) / (farPlane - nearPlane);
  var x = (2 * nearPlane) / (right - left);
  var y = (2 * nearPlane) / (top - bottom);
  var perspectiveMatrix = [
    x, 0, a, 0,
    0, y, b, 0,
    0, 0, c, d,
    0, 0, -1, 0
  ];

  //     Create the modelview matrix
  //     More info about the modelview matrix: http://3dengine.org/Modelview_matrix
  //     More info about the identity matrix: http://en.wikipedia.org/wiki/Identity_matrix
  var modelViewMatrix = [
    1, 0, 0, 0,
    0, 1, 0, 0,
    0, 0, 1, 0,
    0, 0, 0, 1
  ];
  //     Get the vertex position attribute location from the shader program
  var vertexPosAttribLocation = gl.getAttribLocation(gl.program, "vertexPosition");
  //				colorLoc = gl.getVaryingLocation(gl.program, "vColor");
  //				alert("color loc : " + colorLoc );
  //     Specify the location and format of the vertex position attribute
  gl.vertexAttribPointer(vertexPosAttribLocation, 3.0, gl.FLOAT, false, 0, 0);
  //gl.vertexAttribPointer(colorLoc, 4.0, gl.FLOAT, false, 0, 0);
  //     Get the location of the "modelViewMatrix" uniform variable from the
  //     shader program
  var uModelViewMatrix = gl.getUniformLocation(gl.program, "modelViewMatrix");
  //     Get the location of the "perspectiveMatrix" uniform variable from the
  //     shader program
  var uPerspectiveMatrix = gl.getUniformLocation(gl.program, "perspectiveMatrix");
  //     Set the values
  gl.uniformMatrix4fv(uModelViewMatrix, false, new Float32Array(perspectiveMatrix));
  gl.uniformMatrix4fv(uPerspectiveMatrix, false, new Float32Array(modelViewMatrix));
  //	gl.varyingVector4fv(
  //     Draw the triangles in the vertex buffer. The first parameter specifies what
  //     drawing mode to use. This can be GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP,
  //     GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP,
  //     GL_QUADS, and GL_POLYGON
  //gl.drawArrays( gl.LINES, 0, numLines );
  //gl.flush();

  //setInterval( drawScene, 1000 / 40 );
  animate();
  setTimeout(timer, 1500);
}
var count = 0;
var cn = 0;

function animate() {
  requestAnimationFrame(animate);
  drawScene();
}


function drawScene() {
  draw();

  gl.lineWidth(1);
  gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.DYNAMIC_DRAW);

  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  //gl.drawArrays( gl.LINES_STRIP, 0, numLines );
  gl.drawArrays(gl.LINES, 0, numLines);
  //gl.drawArrays( gl.QUAD_STRIP, 0, numLines );

  gl.flush();
}

// ===================================
function setup() {
  setup2();
}


function draw() {
  switch (drawType) {
    case 0:
      draw0();
      break;
    case 1:
      draw1();
      break;
    case 2:
      draw2();
      break;
  }
}

// ===================================

function setup1() {

  vertices = [];
  velThetaArr = [];
  velRadArr = [];
  ratio = cw / ch;
  velocities = [];

  // -------------------------------

  for (var i = 0; i < numLines; i++) {

    var rad = Math.random() * 2 + .5;
    var theta = Math.random() * Math.PI * 2;
    var velTheta = Math.random() * Math.PI * 2;

    vertices.push(rad * Math.cos(theta), rad * Math.sin(theta), 1.83);//(Math.random() * 2 - 1)*ratio, Math.random() * 2 - 1, 1.83 );
    vertices.push(rad * Math.cos(theta), rad * Math.sin(theta), 1.83);

    velocities.push((Math.random() * 2 - 1) * .05, (Math.random() * 2 - 1) * .05, .93 + Math.random() * .02);
    velThetaArr.push(velTheta);
    velRadArr.push(rad);

  }

}

// -------------------------------

function setup2() {

  vertices = [];
  velThetaArr = [];
  velRadArr = [];
  ratio = cw / ch;
  velocities = [];
  thetaArr = [];
  freqArr = [];
  boldRateArr = [];

  // -------------------------------

  for (var ii = 0; ii < numLines; ii++) {
    var rad = ( 0.1 + .2 * Math.random() );
    var theta = Math.random() * Math.PI * 2;
    var velTheta = Math.random() * Math.PI * 2 / 30;
    var freq = Math.random() * 0.12 + 0.03;
    var boldRate = Math.random() * .04 + .01;
    var randomPosX = (Math.random() * 2  - 1) * window.innerWidth / window.innerHeight;
    var randomPosY = Math.random() * 2 - 1;

    vertices.push(rad * Math.cos(theta), rad * Math.sin(theta), 1.83);
    vertices.push(rad * Math.cos(theta), rad * Math.sin(theta), 1.83);

    thetaArr.push(theta);
    velThetaArr.push(velTheta);
    velRadArr.push(rad);
    freqArr.push(freq);
    boldRateArr.push(boldRate);


    randomTargetXArr.push(randomPosX);
    randomTargetYArr.push(randomPosY);
  }

  freqArr = new Float32Array(freqArr);

}

// -------------------------------


// ===================================

function draw0() {

  var i, n = vertices.length, p, bp;
  var px, py;
  var pTheta;
  var rad;
  var num;
  var targetX, targetY;

  for (i = 0; i < numLines * 2; i += 2) {
    count += .3;
    bp = i * 3;

    vertices[bp] = vertices[bp + 3];
    vertices[bp + 1] = vertices[bp + 4];

    num = parseInt(i / 2);
    targetX = randomTargetXArr[num];
    targetY = randomTargetYArr[num];


    px = vertices[bp + 3];
    px += (targetX - px) * (Math.random() * .04 + .06);
    vertices[bp + 3] = px;


    //py = (Math.sin(cn) + 1) * .2 * (Math.random() * .5 - .25);
    py = vertices[bp + 4];
    py += (targetY - py) * (Math.random() * .04 + .06);
    vertices[bp + 4] = py;

  }
}

// -------------------------------

function draw1() {

  var i, n = vertices.length, p, bp;
  var px, py;
  var pTheta;
  var rad;
  var num;
  var targetX, targetY;

  for (i = 0; i < numLines * 2; i += 2) {
    count += .3;
    bp = i * 3;

    vertices[bp] = vertices[bp + 3];
    vertices[bp + 1] = vertices[bp + 4];

    num = parseInt(i / 2);
    pTheta = thetaArr[num];
    rad = velRadArr[num];

    pTheta = pTheta + velThetaArr[num];
    thetaArr[num] = pTheta;

    targetX = rad * Math.cos(pTheta);
    targetY = rad * Math.sin(pTheta);

    px = vertices[bp + 3];
    px += (targetX - px) * (Math.random() * .1 + .1);
    vertices[bp + 3] = px;


    //py = (Math.sin(cn) + 1) * .2 * (Math.random() * .5 - .25);
    py = vertices[bp + 4];
    py += (targetY - py) * (Math.random() * .1 + .1);
    vertices[bp + 4] = py;
  }
}

// -------------------------------

function draw2() {
  cn += .1;

  var i, n = vertices.length, p, bp;
  var px, py;
  var pTheta;
  var rad;
  var num;

  for (i = 0; i < numLines * 2; i += 2) {
    count += .3;
    bp = i * 3;
    // copy old positions

    vertices[bp] = vertices[bp + 3];
    vertices[bp + 1] = vertices[bp + 4];

    num = parseInt(i / 2);
    pTheta = thetaArr[num];

    rad = velRadArr[num];// + Math.cos(pTheta + i * freqArr[i]) *  boldRateArr[num];

    pTheta = pTheta + velThetaArr[num];
    thetaArr[num] = pTheta;

    px = vertices[bp + 3];
    px = rad * Math.cos(pTheta) * 0.1 + px;
    vertices[bp + 3] = px;


    //py = (Math.sin(cn) + 1) * .2 * (Math.random() * .5 - .25);
    py = vertices[bp + 4];

    py = py + rad * Math.sin(pTheta) * 0.1;
    //p *= ( Math.random() -.5);
    vertices[bp + 4] = py;
  }
}

// -------------------------------


function timer() {
  drawType = (drawType + 1) % 3;

  setTimeout(timer, 1500);
}

              
            
!
999px

Console