Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                  <body>
    <canvas id="glcanvas" width="800" height="600"></canvas>
  </body>
              
            
!

CSS

              
                body {
  background-color: #ffffff;
}
              
            
!

JS

              
                var cubeRotation = 0.0;

main();


//Resize image
/**
(function() {
    var canvas = document.getElementById('glcanvas'),
            context = canvas.getContext('2d');

    // resize the canvas to fill browser window dynamically
    //window.addEventListener('resize', resizeCanvas, false);

    function resizeCanvas() {
            //canvas.width = window.innerWidth;
            canvas.width = window.innerHeight;

            //canvas.height = window.innerHeight;
            canvas.height = window.innerHeight;


            //
             // Your drawings need to be inside this function otherwise they will be reset when 
             // you resize the browser window and the canvas goes will be cleared.
             //
            drawStuff(); 
    }
    resizeCanvas();

    function drawStuff() {
            // do your drawing stuff here
    }
})();
*/
//
// Start here
//
function main() {
  const canvas = document.querySelector('#glcanvas');
  const gl = canvas.getContext('webgl') || canvas.getContext('experimental-webgl');

  // If we don't have a GL context, give up now

  if (!gl) {
    alert('Unable to initialize WebGL. Your browser or machine may not support it.');
    return;
  }

  // Vertex shader program

  const vsSource = `
    attribute vec4 aVertexPosition;
    attribute vec4 aVertexColor;
    uniform mat4 uModelViewMatrix;
    uniform mat4 uProjectionMatrix;
    varying lowp vec4 vColor;
    void main(void) {
      gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
      vColor = aVertexColor;
    }
  `;

  // Fragment shader program

  const fsSource = `
    varying lowp vec4 vColor;
    void main(void) {
      gl_FragColor = vColor;
    }
  `;

  // Initialize a shader program; this is where all the lighting
  // for the vertices and so forth is established.
  const shaderProgram = initShaderProgram(gl, vsSource, fsSource);

  // Collect all the info needed to use the shader program.
  // Look up which attributes our shader program is using
  // for aVertexPosition, aVevrtexColor and also
  // look up uniform locations.
  const programInfo = {
    program: shaderProgram,
    attribLocations: {
      vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
      vertexColor: gl.getAttribLocation(shaderProgram, 'aVertexColor'),
    },
    uniformLocations: {
      projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
      modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
    },
  };

  // Here's where we call the routine that builds all the
  // objects we'll be drawing.
  const buffers = initBuffers(gl);

  var then = 0;

  // Draw the scene repeatedly
  function render(now) {
    now *= 0.001;  // convert to seconds
    const deltaTime = now - then;
    then = now;

    drawScene(gl, programInfo, buffers, deltaTime);

    requestAnimationFrame(render);
  }
  requestAnimationFrame(render);
}

//
// initBuffers
//
// Initialize the buffers we'll need. For this demo, we just
// have one object -- a simple three-dimensional cube.
//
function initBuffers(gl) {

  // Create a buffer for the cube's vertex positions.

  const positionBuffer = gl.createBuffer();

  // Select the positionBuffer as the one to apply buffer
  // operations to from here out.

  gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
const cospos = 0.2;

const positions = [
  0.0, 0.0, 0.5,
  0.5, 0.0, 0.0,
  0.0, 1, 0.0,
  -0.5, 0.0, 0.0,
  -cospos, -cospos, 0.0,
  cospos, -cospos, 0.0,
  0.0, 0.0, -0.5
];
  // Now pass the list of positions into WebGL to build the
  // shape. We do this by creating a Float32Array from the
  // JavaScript array, then use it to fill the current buffer.

  gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW);

  // Now set up the colors for the faces. We'll use solid colors
  // for each face.

  const faceColors = [
    [0.8,  0.3,  0.0,  0.5],    // Front face: white
    [0.0,  0.0,  1.0,  0.5],    // Front face: white
    [0.0,  0.0,  1.0,  0.5],    // Front face: white
    [0.0,  1.0,  1.0,  0.5],    // Front face: white
    [0.0,  0.0,  1.0,  0.5],    // Front face: white
    [0.0,  0.0,  1.0,  0.5],    // Front face: white
    [0.0,  0.0,  1.0,  0.5],    // Front face: white
 
  ];

  // Convert the array of colors into a table for all the vertices.

  var colors = [];

  for (var j = 0; j < faceColors.length; ++j) {
    const c = faceColors[j];

    // Repeat each color four times for the four vertices of the face
    colors = colors.concat(c, c, c, c);
  }

  const colorBuffer = gl.createBuffer();
  gl.bindBuffer(gl.ARRAY_BUFFER, colorBuffer);
  gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(colors), gl.STATIC_DRAW);

  // Build the element array buffer; this specifies the indices
  // into the vertex arrays for each face's vertices.

  const indexBuffer = gl.createBuffer();
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);

  // This array defines each face as two triangles, using the
  // indices into the vertex array to specify each triangle's
  // position.
  const indices = [
  0,1,2,
  0,2,3,
  0,3,4,
  0,4,5,
  0,5,1,

  6,1,2,
  6,2,3,
  6,3,4,
  6,4,5,
  6,5,1
];

  gl.bufferData(gl.ELEMENT_ARRAY_BUFFER,new Uint16Array(indices), gl.STATIC_DRAW);

  return {
    position: positionBuffer,
    color: colorBuffer,
    indices: indexBuffer,
  };
}

//
// Draw the scene.
//
function drawScene(gl, programInfo, buffers, deltaTime) {
  gl.clearColor(1.0,  1.0, 0.8, 1);  // Clear to black, fully opaque
  gl.clearDepth(1.0);                 // Clear everything
  gl.enable(gl.DEPTH_TEST);           // Enable depth testing
  gl.depthFunc(gl.LEQUAL);            // Near things obscure far things

  // Clear the canvas before we start drawing on it.

  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);

  // Create a perspective matrix, a special matrix that is
  // used to simulate the distortion of perspective in a camera.
  // Our field of view is 45 degrees, with a width/height
  // ratio that matches the display size of the canvas
  // and we only want to see objects between 0.1 units
  // and 100 units away from the camera.

  const fieldOfView = 45 * Math.PI / 180;   // in radians
  const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
  const zNear = 0.1;
  const zFar = 100.0;
  const projectionMatrix = mat4.create();

  // note: glmatrix.js always has the first argument
  // as the destination to receive the result.
  mat4.perspective(projectionMatrix,
                   fieldOfView,
                   aspect,
                   zNear,
                   zFar);

  // Set the drawing position to the "identity" point, which is
  // the center of the scene.
  const modelViewMatrix = mat4.create();

  // Now move the drawing position a bit to where we want to
  // start drawing the square.

  mat4.translate(modelViewMatrix,     // destination matrix
                 modelViewMatrix,     // matrix to translate
                 [-0.0, 0.0, -6.0]);  // amount to translate
  /**mat4.rotate(modelViewMatrix,  // destination matrix
              modelViewMatrix,  // matrix to rotate
              cubeRotation,     // amount to rotate in radians
              [0, 0, 1]);       // axis to rotate around (Z)*/
  mat4.rotate(modelViewMatrix,  // destination matrix
              modelViewMatrix,  // matrix to rotate
              cubeRotation * .7,// amount to rotate in radians
              [0, 1, 0]);       // axis to rotate around (X)
  mat4.scale(modelViewMatrix,modelViewMatrix, [2, 2, 2]);

  // Tell WebGL how to pull out the positions from the position
  // buffer into the vertexPosition attribute
  {
    const numComponents = 3;
    const type = gl.FLOAT;
    const normalize = false;
    const stride = 12;
    const offset = 0;
    gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
    gl.vertexAttribPointer(
        programInfo.attribLocations.vertexPosition,
        numComponents,
        type,
        normalize,
        stride,
        offset);
    gl.enableVertexAttribArray(
        programInfo.attribLocations.vertexPosition);
  }

  // Tell WebGL how to pull out the colors from the color buffer
  // into the vertexColor attribute.
  {
    const numComponents = 4;
    const type = gl.FLOAT;
    const normalize = false;
    const stride = 32;
    const offset = 0;
    gl.bindBuffer(gl.ARRAY_BUFFER, buffers.color);
    gl.vertexAttribPointer(
        programInfo.attribLocations.vertexColor,
        numComponents,
        type,
        normalize,
        stride,
        offset);
    gl.enableVertexAttribArray(
        programInfo.attribLocations.vertexColor);
  }

  // Tell WebGL which indices to use to index the vertices
  gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);

  // Tell WebGL to use our program when drawing

  gl.useProgram(programInfo.program);

  // Set the shader uniforms

  gl.uniformMatrix4fv(
      programInfo.uniformLocations.projectionMatrix,
      false,
      projectionMatrix);
  gl.uniformMatrix4fv(
      programInfo.uniformLocations.modelViewMatrix,
      false,
      modelViewMatrix);

  {
    const vertexCount = 30;
    const type = gl.UNSIGNED_SHORT;
    const offset = 0;
    gl.drawElements(gl.TRIANGLE_STRIP, vertexCount, type, offset);
  }

  // Update the rotation for the next draw

  cubeRotation += deltaTime;
}

//
// Initialize a shader program, so WebGL knows how to draw our data
//
function initShaderProgram(gl, vsSource, fsSource) {
  const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
  const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);

  // Create the shader program

  const shaderProgram = gl.createProgram();
  gl.attachShader(shaderProgram, vertexShader);
  gl.attachShader(shaderProgram, fragmentShader);
  gl.linkProgram(shaderProgram);

  // If creating the shader program failed, alert

  if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
    alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
    return null;
  }

  return shaderProgram;
}

//
// creates a shader of the given type, uploads the source and
// compiles it.
//
function loadShader(gl, type, source) {
  const shader = gl.createShader(type);

  // Send the source to the shader object

  gl.shaderSource(shader, source);

  // Compile the shader program

  gl.compileShader(shader);

  // See if it compiled successfully

  if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
    alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
    gl.deleteShader(shader);
    return null;
  }

  return shader;
}

              
            
!
999px

Console