cssAudio - Activefile-genericCSS - ActiveGeneric - ActiveHTML - ActiveImage - ActiveJS - ActiveSVG - ActiveText - Activefile-genericVideo - Activehtmlicon-personicon-teamoctocatpop-outspinnerstartv

Pen Settings

CSS Base

Vendor Prefixing

Add External CSS

These stylesheets will be added in this order and before the code you write in the CSS editor. You can also add another Pen here, and it will pull the CSS from it. Try typing "font" or "ribbon" below.

Quick-add: + add another resource

Add External JavaScript

These scripts will run in this order and before the code in the JavaScript editor. You can also link to another Pen here, and it will run the JavaScript from it. Also try typing the name of any popular library.

Quick-add: + add another resource

Code Indentation

     

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

            
              <h1>Line Graph with Raphael.js</h1>
<div id="line-graph" class="line-graph"></div>
            
          
!
            
              @import "compass/css3";

h1 {
  width: 1023px;
  margin: 20px auto 0;
}
.line-graph {
		width: 1023px;
		height: 322px;
		margin: 20px auto 10px;
		background-image: url();
}
            
          
!
            
              $(document).ready(function(){
  initLineGraph();
});

/* I am fully aware that all of this code should be made into a class or jQuery plugin */

/* point attributes object to pass to raphael.js*/
var pointOptions = {
	'fill' : '#333333',
	'stroke' : '#7a7a7a',
	radius : 6
}

/* line attributes object to pass to raphael.js*/    
var lineOptions = {
  'stroke': 'rgba(102, 102, 102, .08)',
  'stroke-width': 2,
  'fill': '#000',
  /* nice inner shadow for line, requires line be convex and closed off */
  'fill-opacity': 0.03 /* <-- doesn't work in old IEs */
}

/* initialize graph */    
function initLineGraph () {
	/* set up raphael.js canvas with the elements of the graph element */
  var paper = new Raphael(document.getElementById('line-graph'), $('#line-graph').width(), $('#line-graph').height());  
  graphData.paper = paper;
  
  /* create initial line*/
  var path = createPathString(graphData);
  /* draw intial line with raphael.js */
  var line = paper.path(path); 
  
  /* set line drawing attributes */
  line.attr(lineOptions);
	
  /* save line to our global(I know, I know) data object */
  graphData.line = line;

  /* draw initial points */
  drawPoints(graphData, pointOptions);
  
  /* set graph auto changing (for demo purposes) */
  setInterval(function(){
    advanceGraph();
  }, 3000);

}

/* changes between data sets in global graph object */
function advanceGraph() {
  if(graphData.current < graphData.charts.length -1) {
    graphData.current++;
  }
  else {
    graphData.current = 1;
  }
  
  /* animate to new data positions */
  animatePoints(graphData, graphData.charts[graphData.current]);
}

/* draw initial points */
function drawPoints(data, options) {
  
  /* point radius */
  var radius = options.radius;
  /* set points to initial data set */
  var points = data.charts[0].points;
	
	/* iterate through points */
  for (var i = 0, length = points.length; i < length; i++) {
    /* calculate x and y positions: x delta is a constant, y value is intially set to start at 0 on y axis */
    /* xOffset and yOffets values are the locations within the canvas where the x and y axes are located */
    var xPos = data.xOffset + (i * data.xDelta);
		var yPos = data.yOffset;
    
    /* draw */
    var circle = data.paper.circle(xPos, yPos, radius);
		circle.attr(pointOptions);
    /* store raphael.js point object in global data set */
		points[i].point = circle;
	}
}

/* animate points into new positions */
/* data is the global data object, newData is the new dataset to animate to*/
function animatePoints(data, newData) {
	/* varibale to hold new raphael path string */
  var newPath = '';
	/* upper and lower limits are the limits of the data set and are used to scale the data values into pixel positions */
  var upperLimit = parseInt(newData.upper);
	if(isNaN(upperLimit)) {
		/* don't set to 0 to avoid divide by 0 error */
    upperLimit = 1;
	}
	var lowerLimit = parseInt(newData.lower);
	if(isNaN(lowerLimit)) {
		lowerLimit = 0;
	}
  
  /* used to calculate pixel positions based on limits */ 
	var scaleFactor = data.yOffset / (upperLimit - lowerLimit) ; 

  /* get initial points from global data  */
  var points = data.charts[0].points;
  
  /* loop through points */
	for (var i = 0, length = points.length; i < length; i++) {
		/* if this is the first point add an 'M' set to start drawing the raphael.js path  or use and 'L' set */
    if(i == 0) {
      /* I have hard coded the start of the line, sorry */
      newPath += 'M 25 291 L ';
			/* since the x axis is constant, pass along the original x coordinate */
      newX = data.xOffset + ' ';
			newPath += newX;
			/* calculate the new y value using scale factor and limits */
      newY = data.yOffset - ((newData.points[i].value - lowerLimit) * scaleFactor) + ' ';
			/* add new y to path string */
      newPath += newY;
		}
		else {
			newPath += ' L ';
			newX = data.xOffset + (i * data.xDelta) + ' ';
			newPath += newX;
			newY = data.yOffset - ((newData.points[i].value - lowerLimit) * scaleFactor);
			newPath += newY;
		}
    
    /* animate raphael.js points to new positions */
		points[i].point.animate({
				cy : data.yOffset - ((newData.points[i].value - lowerLimit) * scaleFactor)
			},
			800,
			'ease-in-out'
		);
	}
  /* add end of path string, sorry hardcoded again */
	newPath += ' L 989 291 Z';
  
  /* animate raphael.js line into new position */
  data.line.animate({path : newPath}, 800, 'ease-in-out');
}

/* create a raphael.js path string based on a data set */
function createPathString(data) {

  var points = data.charts[data.current].points;

  
	var path = 'M 25 291 L ' + data.xOffset + ' ' + (data.yOffset - points[0].value);
	var prevY = data.yOffset - points[0].value;

	for (var i = 1, length = points.length; i < length; i++) {
		path += ' L ';
		path += data.xOffset + (i * data.xDelta) + ' ';
		path += (data.yOffset - points[i].value);

		prevY = data.yOffset - points[i].value;
	}
	path += ' L 989 291 Z';
	return path;
}

/**** Global Data Object *****/
  var graphData = {
    current     : 0,
    /* constant distance between points on the x axis */
    xDelta      : 69,
    /* location of y axis in horizontal space */
    xOffset     : 214,
    /* location of x axis in vertical space */
    yOffset     : 289,
    charts      :[
        /* initial data set */
        {
            /* lower limit of the data set (can be used to flatten or exaggerate the graph) */
            lower  : 0,
            /* upper limit is the upper limit of the data set (set it a bit above your highest data point)*/
            /* used to convert data values into pixel positions */
            upper  : 200,
            points : [
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0}
            ]
        },
        {
            lower  : 0,
            upper  : 200,
            points : [
                { value : 58},
                { value : 64},
                { value : 12},
                { value : 90},
                { value : 101},
                { value : 87},
                { value : 53},
                { value : 72},
                { value : 88},
                { value : 109},
                { value : 45},
                { value : 37}
            ]
        },
        {
            lower  : 0,
            upper  : 200,
            points : [
                { value : 132},
                { value : 112},
                { value : 124},
                { value : 73},
                { value : 92},
                { value : 47},
                { value : 67},
                { value : 35},
                { value : 112},
                { value : 90},
                { value : 75},
                { value : 62}
            ]
        }
    ]
};
            
          
!
999px
Close

Asset uploading is a PRO feature.

As a PRO member, you can drag-and-drop upload files here to use as resources. Images, Libraries, JSON data... anything you want. You can even edit them anytime, like any other code on CodePen.

Go PRO

Loading ..................

Console