Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel is required to process package imports. If you need a different preprocessor remove all packages first.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <!DOCTYPE html>
<html lang="en">
  <head>
    <title>Disappearing People Project</title>
    <meta charset="utf-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1">
    <meta name="author" content="Jason Mayes">

    <!-- Import the webpage's stylesheet -->
    <link rel="stylesheet" href="/style.css">

    <!-- Import TensorFlow.js library -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs/dist/tf.min.js" type="text/javascript"></script>
  </head>  
  <body>
    <h1>Disappearing People Project</h1>
    
    <header class="note"> 
      <h2>Removing people from complex backgrounds in real time using TensorFlow.js</h2>
    </header>

    <h2>How to use</h2>
    <p>Please wait for the model to load before trying the demos below at which point they will become visible when ready to use.</p>
    <p>Here is a video of what you can expect to achieve using my custom algorithm. The top is the actual footage, the bottom video is with the real time removal of people working in JavaScript!</p>
    <iframe width="540" height="812" src="https://www.youtube.com/embed/0LqEuc32uTc?controls=0&autoplay=1" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
    
    <section id="demos" class="invisible">

      <h2>Demo: Webcam live removal</h2>
      <p>Try this out using your webcam. Stand a few feet away from your webcam and start walking around... Watch as you slowly disappear in the bottom preview.</p>
      
      <div id="liveView" class="webcam">
        <button id="webcamButton">Enable Webcam</button>
        <video id="webcam" autoplay></video>
      </div>
    </section>
  

    <!-- Include the Glitch button to show what the webpage is about and
         to make it easier for folks to view source and remix -->
    <div class="glitchButton" style="position:fixed;top:20px;right:20px;"></div>
    <script src="https://button.glitch.me/button.js"></script>
    
    <!-- Load the bodypix model to recognize body parts in images -->
    <script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/body-pix@2.0"></script>
    
    <!-- Import the page's JavaScript to do some stuff -->
    <script src="/script.js" defer></script>
  </body>
</html>
              
            
!

CSS

              
                /**
 * @license
 * Copyright 2018 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */

/******************************************************
 * Stylesheet by Jason Mayes 2020.
 *
 * Get latest code on my Github:
 * https://github.com/jasonmayes/Real-Time-Person-Removal
 * Got questions? Reach out to me on social:
 * Twitter: @jason_mayes
 * LinkedIn: https://www.linkedin.com/in/creativetech
 *****************************************************/

body {
  font-family: helvetica, arial, sans-serif;
  margin: 2em;
  color: #3D3D3D;
}

h1 {
  font-style: italic;
  color: #FF6F00;
}

h2 {
  clear: both;
}

em {
  font-weight: bold;
}

video {
  clear: both;
  display: block;
}

section {
  opacity: 1;
  transition: opacity 500ms ease-in-out;
}

header, footer {
  clear: both;
}

button {
  z-index: 1000;
  position: relative;
}

.removed {
  display: none;
}

.invisible {
  opacity: 0.2;
}

.note {
  font-style: italic;
  font-size: 130%;
}

.webcam {
  position: relative;
}

.webcam, .classifyOnClick {
  position: relative;
  float: left;
  width: 48%;
  margin: 2% 1%;
  cursor: pointer;
}

.webcam p, .classifyOnClick p {
  position: absolute;
  padding: 5px;
  background-color: rgba(255, 111, 0, 0.85);
  color: #FFF;
  border: 1px dashed rgba(255, 255, 255, 0.7);
  z-index: 2;
  font-size: 12px;
}

.highlighter {
  background: rgba(0, 255, 0, 0.25);
  border: 1px dashed #fff;
  z-index: 1;
  position: absolute;
}

.classifyOnClick {
  z-index: 0;
  position: relative;
}

.classifyOnClick canvas, .webcam canvas.overlay {
  opacity: 1;
  
  top: 0;
  left: 0;
  z-index: 2;
}

#liveView {
  transform-origin: top left;
  transform: scale(1);
}
              
            
!

JS

              
                /**
 * @license
 * Copyright 2018 Google LLC. All Rights Reserved.
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 * =============================================================================
 */

/********************************************************************
 * Real-Time-Person-Removal Created by Jason Mayes 2020.
 *
 * Get latest code on my Github:
 * https://github.com/jasonmayes/Real-Time-Person-Removal
 *
 * Got questions? Reach out to me on social:
 * Twitter: @jason_mayes
 * LinkedIn: https://www.linkedin.com/in/creativetech
 ********************************************************************/

const video = document.getElementById('webcam');
const liveView = document.getElementById('liveView');
const demosSection = document.getElementById('demos');
const DEBUG = false;


// An object to configure parameters to set for the bodypix model.
// See github docs for explanations.
const bodyPixProperties = {
  architecture: 'MobileNetV1',
  outputStride: 16,
  multiplier: 0.75,
  quantBytes: 4
};

// An object to configure parameters for detection. I have raised
// the segmentation threshold to 90% confidence to reduce the
// number of false positives.
const segmentationProperties = {
  flipHorizontal: false,
  internalResolution: 'high',
  segmentationThreshold: 0.9,
  scoreThreshold: 0.2
};


// Render returned segmentation data to a given canvas context.
function processSegmentation(canvas, segmentation) {
  var ctx = canvas.getContext('2d');
  console.log(segmentation)
  // Get data from our overlay canvas which is attempting to estimate background.
  var imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);
  var data = imageData.data;
  
  // Get data from the live webcam view which has all data.
  var liveData = videoRenderCanvasCtx.getImageData(0, 0, canvas.width, canvas.height);
  var dataL = liveData.data;
   
  var minX = 100000;
  var minY = 100000;
  var maxX = 0;
  var maxY = 0;
  
  var foundBody = false;
  
  // Go through pixels and figure out bounding box of body pixels.
  for (let x = 0; x < canvas.width; x++) {
    for (let y = 0; y < canvas.height; y++) {
      let n = y * canvas.width + x;
      // Human pixel found. Update bounds.
      if (segmentation.data[n] !== 0) {
        if(x < minX) {
          minX = x;
        }
        
        if(y < minY) {
          minY = y;
        }
        
        if(x > maxX) {
          maxX = x;
        }
        
        if(y > maxY) {
          maxY = y;
        }
        foundBody = true;
      }
    } 
  }
  
  // Calculate dimensions of bounding box.
  var width = maxX - minX;
  var height = maxY - minY;
  
  // Define scale factor to use to allow for false negatives around this region.
  var scale = 1.3;

  //  Define scaled dimensions.
  var newWidth = width * scale;
  var newHeight = height * scale;

  // Caculate the offset to place new bounding box so scaled from center of current bounding box.
  var offsetX = (newWidth - width) / 2;
  var offsetY = (newHeight - height) / 2;

  var newXMin = minX - offsetX;
  var newYMin = minY - offsetY;
  
  
  // Now loop through update backgound understanding with new data
  // if not inside a bounding box.
  for (let x = 0; x < canvas.width; x++) {
    for (let y = 0; y < canvas.height; y++) {
      // If outside bounding box and we found a body, update background.
      if (foundBody && (x < newXMin || x > newXMin + newWidth) || ( y < newYMin || y > newYMin + newHeight)) {
        // Convert xy co-ords to array offset.
        let n = y * canvas.width + x;

        data[n * 4] = dataL[n * 4];
        data[n * 4 + 1] = dataL[n * 4 + 1];
        data[n * 4 + 2] = dataL[n * 4 + 2];
        data[n * 4 + 3] = 255;            

      } else if (!foundBody) {
        // No body found at all, update all pixels.
        let n = y * canvas.width + x;
        data[n * 4] = dataL[n * 4];
        data[n * 4 + 1] = dataL[n * 4 + 1];
        data[n * 4 + 2] = dataL[n * 4 + 2];
        data[n * 4 + 3] = 255;    
      }
    }
  }

  ctx.putImageData(imageData, 0, 0);
  
  if (DEBUG) {
    ctx.strokeStyle = "#00FF00"
    ctx.beginPath();
    ctx.rect(newXMin, newYMin, newWidth, newHeight);
    ctx.stroke();
  }
}



// Let's load the model with our parameters defined above.
// Before we can use bodypix class we must wait for it to finish
// loading. Machine Learning models can be large and take a moment to
// get everything needed to run.
var modelHasLoaded = false;
var model = undefined;

model = bodyPix.load(bodyPixProperties).then(function (loadedModel) {
  model = loadedModel;
  modelHasLoaded = true;
  // Show demo section now model is ready to use.
  demosSection.classList.remove('invisible');
});


/********************************************************************
// Continuously grab image from webcam stream and classify it.
********************************************************************/

var previousSegmentationComplete = true;

// Check if webcam access is supported.
function hasGetUserMedia() {
  return !!(navigator.mediaDevices &&
    navigator.mediaDevices.getUserMedia);
}


// This function will repeatidly call itself when the browser is ready to process
// the next frame from webcam.
function predictWebcam() {
  if (previousSegmentationComplete) {
    // Copy the video frame from webcam to a tempory canvas in memory only (not in the DOM).
    videoRenderCanvasCtx.drawImage(video, 0, 0);
    previousSegmentationComplete = false;
    // Now classify the canvas image we have available.
    model.segmentPerson(videoRenderCanvas, segmentationProperties).then(function(segmentation) {
      processSegmentation(webcamCanvas, segmentation);
      previousSegmentationComplete = true;
    });
  }

  // Call this function again to keep predicting when the browser is ready.
  window.requestAnimationFrame(predictWebcam);
}


// Enable the live webcam view and start classification.
function enableCam(event) {
  if (!modelHasLoaded) {
    return;
  }
  
  // Hide the button.
  event.target.classList.add('removed');  
  
  // getUsermedia parameters.
  const constraints = {
    video: true
  };

  // Activate the webcam stream.
  navigator.mediaDevices.getUserMedia(constraints).then(function(stream) {
    video.addEventListener('loadedmetadata', function() {
      // Update widths and heights once video is successfully played otherwise
      // it will have width and height of zero initially causing classification
      // to fail.
      webcamCanvas.width = video.videoWidth;
      webcamCanvas.height = video.videoHeight;
      videoRenderCanvas.width = video.videoWidth;
      videoRenderCanvas.height = video.videoHeight;
      bodyPixCanvas.width = video.videoWidth;
      bodyPixCanvas.height = video.videoHeight;
      let webcamCanvasCtx = webcamCanvas.getContext('2d');
      webcamCanvasCtx.drawImage(video, 0, 0);
    });
    
    video.srcObject = stream;
    
    video.addEventListener('loadeddata', predictWebcam);
  });
}


// We will create a tempory canvas to render to store frames from 
// the web cam stream for classification.
var videoRenderCanvas = document.createElement('canvas');
var videoRenderCanvasCtx = videoRenderCanvas.getContext('2d');

// Lets create a canvas to render our findings to the DOM.
var webcamCanvas = document.createElement('canvas');
webcamCanvas.setAttribute('class', 'overlay');
liveView.appendChild(webcamCanvas);

// Create a canvas to render ML findings from to manipulate.
var bodyPixCanvas = document.createElement('canvas');
bodyPixCanvas.setAttribute('class', 'overlay');
var bodyPixCanvasCtx = bodyPixCanvas.getContext('2d');
bodyPixCanvasCtx.fillStyle = '#FF0000';

liveView.appendChild(bodyPixCanvas);

// If webcam supported, add event listener to button for when user
// wants to activate it.
if (hasGetUserMedia()) {
  const enableWebcamButton = document.getElementById('webcamButton');
  enableWebcamButton.addEventListener('click', enableCam);
} else {
  console.warn('getUserMedia() is not supported by your browser');
}
              
            
!
999px

Console