Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div class="container"></div>


<script id="vertex-shader" type="x-shader/x-vertex">
    //
    // GLSL textureless classic 2D noise "cnoise",
    // with an RSL-style periodic variant "pnoise".
    // Author:  Stefan Gustavson ([email protected])
    // Version: 2011-08-22
    //
    // Many thanks to Ian McEwan of Ashima Arts for the
    // ideas for permutation and gradient selection.
    //
    // Copyright (c) 2011 Stefan Gustavson. All rights reserved.
    // Distributed under the MIT license. See LICENSE file.
    // https://github.com/ashima/webgl-noise
    //

    vec4 mod289(vec4 x)
    {
      return x - floor(x * (1.0 / 289.0)) * 289.0;
    }

    vec4 permute(vec4 x)
    {
      return mod289(((x*34.0)+1.0)*x);
    }

    vec4 taylorInvSqrt(vec4 r)
    {
      return 1.79284291400159 - 0.85373472095314 * r;
    }

    vec2 fade(vec2 t) {
      return t*t*t*(t*(t*6.0-15.0)+10.0);
    }

    // Classic Perlin noise
    float cnoise(vec2 P)
    {
      vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
      vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
      Pi = mod289(Pi); // To avoid truncation effects in permutation
      vec4 ix = Pi.xzxz;
      vec4 iy = Pi.yyww;
      vec4 fx = Pf.xzxz;
      vec4 fy = Pf.yyww;

      vec4 i = permute(permute(ix) + iy);

      vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ;
      vec4 gy = abs(gx) - 0.5 ;
      vec4 tx = floor(gx + 0.5);
      gx = gx - tx;

      vec2 g00 = vec2(gx.x,gy.x);
      vec2 g10 = vec2(gx.y,gy.y);
      vec2 g01 = vec2(gx.z,gy.z);
      vec2 g11 = vec2(gx.w,gy.w);

      vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
      g00 *= norm.x;
      g01 *= norm.y;
      g10 *= norm.z;
      g11 *= norm.w;

      float n00 = dot(g00, vec2(fx.x, fy.x));
      float n10 = dot(g10, vec2(fx.y, fy.y));
      float n01 = dot(g01, vec2(fx.z, fy.z));
      float n11 = dot(g11, vec2(fx.w, fy.w));

      vec2 fade_xy = fade(Pf.xy);
      vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
      float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
      return 2.3 * n_xy;
    }

    float map(float value, float oldMin, float oldMax, float newMin, float newMax) {
        return newMin + (newMax - newMin) * (value - oldMin) / (oldMax - oldMin);
    }

    varying vec3 vUv;
    varying float vTime;
    varying float vZ;
    uniform float time;
    void main()
    {
        vUv = position;
        vTime = time;
        vec3 newPos = position;
        vec2 peak = vec2(1.0 - abs(.5 - uv.x), 1.0 - abs(.5 - uv.y));
        vec2 noise = vec2(
            map(cnoise(vec2(0.3 * time + uv.x * 5., uv.y * 5.)), 0., 1., -2., (peak.x * peak.y * 30.)),
            map(cnoise(vec2(-0.3 * time + uv.x * 5., uv.y * 5.)), 0., 1., -2., 25.)
        );

        //newPos.x += noise.x * 10.;
        newPos.z += noise.x * .06 * noise.y;
        vZ = newPos.z;
        vec4 mvPosition = modelViewMatrix * vec4( newPos, 1.0 );
        gl_PointSize = 5.0;
        gl_Position = projectionMatrix * mvPosition;
    }
    </script>

    <script id="fragment-shader" type="x-shader/x-fragment">
    varying vec3 vUv;
    varying float vTime;
    varying float vZ;
    uniform sampler2D texture;

    float map(float value, float oldMin, float oldMax, float newMin, float newMax) {
        return newMin + (newMax - newMin) * (value - oldMin) / (oldMax - oldMin);
    }


    void main()
    {
        vec3 colorA = vec3(.6, 0.17, 0.17);
        vec3 colorB = vec3(0.17, 0.8, .7); 
        //vec3 color = mix(colorA, colorB, vUv.x * vUv.y);
        float alpha = map(vZ / 2., -1. / 2., 30. / 2., 0.17, 1.); 
        vec3 color = vec3(.5, .5, .6);

        gl_FragColor = vec4( color, alpha);
        gl_FragColor = gl_FragColor * texture2D( texture, gl_PointCoord );
    }
    </script>

              
            
!

CSS

              
                body, .container, canvas {
    margin: 0;
    padding: 0;
    width: 100%;
    height: 100%;
}

canvas {
    display: block;
    background: black;  
}
              
            
!

JS

              
                
class Scene {
    constructor(options) {
        this.$el = options.el;
        this.time = 0;

        this.bindAll();
        this.init();
    }
    
    bindAll() {
        this.render = this.render.bind(this);
        this.resize = this.resize.bind(this);
    }
    
    init() {
        this.textureLoader = new THREE.TextureLoader();
        this.camera = new THREE.PerspectiveCamera( 40, window.innerWidth / window.innerHeight, 1, 2000 );
        this.camera.position.z = 350;
        this.camera.position.y = 200;
        this.camera.lookAt(new THREE.Vector3(0, 0, 0));

        this.scene = new THREE.Scene();

        this.renderer = new THREE.WebGLRenderer({ alpha: true });
        this.renderer.setPixelRatio( window.devicePixelRatio );
        this.renderer.setSize( window.innerWidth, window.innerHeight );
        this.$el.appendChild( this.renderer.domElement );
        

        this.createParticles();
        this.bindEvents();
        this.resize();
        this.render();
    }
    
    createParticles() {        
        const plane = new THREE.PlaneBufferGeometry(500, 250, 250, 125);
        
        const textureLoader = new THREE.TextureLoader();
        textureLoader.crossOrigin = '';
        
        const material = new THREE.ShaderMaterial( {
            uniforms: {
                time: { value: 1.0 },
                texture:   { value: textureLoader.load( "https://s3-us-west-2.amazonaws.com/s.cdpn.io/1081752/spark1.png" ) },
                resolution: { value: new THREE.Vector2() }

            },

            vertexShader: document.getElementById( 'vertex-shader' ).textContent,
            fragmentShader: document.getElementById( 'fragment-shader' ).textContent,
            blending: THREE.AdditiveBlending,
            depthTest: false,
            transparent: true

        } );
        
        console.log(material.uniforms.texture);
        
        //const material = new THREE.PointsMaterial( { size: 1 } );
        this.particles = new THREE.Points( plane, material );
        this.particles.rotation.x = this.degToRad(-90);

        this.scene.add(this.particles);
    }

    
    bindEvents() {
        // window.addEventListener('mousemove', this.mousemove);
        window.addEventListener('resize', this.resize);
    }

    
    resize() {
        const w = window.innerWidth;
        const h = window.innerHeight;
        this.renderer.setSize(w,h);
        this.camera.aspect = w/h;
        this.camera.updateProjectionMatrix();
    }
    
    moveParticles() {
        this.particles.material.uniforms.time.value = this.time;
        // this.particles.material.needsUpdate = true;
    }

    // Animations
    
    render() {
        requestAnimationFrame(this.render);
        this.time += .01;
     
        this.moveParticles();
        this.renderer.render(this.scene, this.camera);
    }
    
    // Utils
    degToRad(angle) {
        return angle * Math.PI / 180;
    }
    
}

const scene = new Scene({
    el: document.querySelector('.container')
});

              
            
!
999px

Console