HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URL's added here will be added as <link>
s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
If the stylesheet you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<head>
<script>
load(this, function (exports) {
function WebMonkeys(opt){
var maxVertexIndex,
vertexIndexBuffer,
resultTextureSide,
resultTexture,
arrays,
arrayByName,
shaderByTask,
gl,
defaultLib,
writer,
renderer,
userLib,
framebuffer,
rendererVertexBuffer;
// () -> Monkeys
function init(){
opt = opt || [];
maxVertexIndex = 0;
resultTextureSide = 0;
arrays = [];
arrayByName = {};
shaderByTask = {};
var glOpt = {antialias: false, preserveDrawingBuffer: true};
if (typeof window === "undefined"){
gl = require("g"+"l")(1, 1, glOpt);
} else {
var canvas = document.createElement("canvas");
gl = canvas.getContext("webgl", glOpt);
gl.canvas = canvas;
gl.canvas.width = 1;
gl.canvas.height = 1;
gl.canvas.style = [
"border: 1px solid black;",
"image-rendering: optimizeSpeed;",
"image-rendering: -moz-crisp-edges;",
"image-rendering: -webkit-optimize-contrast;",
"image-rendering: -o-crisp-edges;",
"image-rendering: pixelated;",
"-ms-interpolation-mode: nearest-neighbor;"].join("");
}
defaultLib = [
"vec2 indexToPos(vec2 size, float index){",
" return vec2(mod(index, size.x), floor(index/size.x));",
"}",
"float posToIndex(vec2 size, vec2 pos){",
" return pos.y*size.x + pos.x;",
"}",
"vec2 scaleRange(vec2 fromA, vec2 fromB, vec2 toA, vec2 toB, vec2 pos){",
" return toA+(pos-fromA)/(fromB-fromA)*(toB-toA);",
"}",
"vec4 packFloat(float x){",
" float s = 0.0;",
" float e = 0.0;",
" float m = x;",
" if (m<0.0) s=1.0, m=-m;",
" for (int i=0; i<24; ++i){",
" if (m>=2.0) m=m/2.0, e+=1.0;",
" if (m< 1.0) m=m/2.0, e-=1.0;",
" if (m>=1.0 && m<2.0) break;",
" };",
" return vec4(",
" floor(fract((m-1.0)*256.0*256.0)*256.0),",
" floor(fract((m-1.0)*256.0)*256.0),",
" floor(fract((m-1.0)*1.0)*256.0),",
" ((e+63.0) + (x>0.0?128.0:0.0)))/255.0;",
"}",
"float unpackFloat(vec4 v){",
" v *= 255.0;",
" float s = v.a >= 128.0 ? 1.0 : -1.0;",
" float e = v.a - (v.a >= 128.0 ? 128.0 : 0.0) - 63.0;",
" float m = 1.0 + v.x/256.0/256.0/256.0 + v.y/256.0/256.0 + v.z/256.0;",
" return s * pow(2.0, e) * m;",
"}",
"vec4 packVec4(vec4 v){",
" return v/255.0;",
"}",
"vec4 unpackVec4(vec4 v){",
" return v*255.0;",
"}",
"vec4 packIndexDepth(int a, int b){",
" float av = float(a);",
" float bv = float(b);",
" float x = mod(floor(av), 256.0);",
" float y = mod(floor(av/256.0), 256.0);",
" float z = mod(floor(av/256.0/256.0), 256.0);",
" float w = mod(floor(bv), 256.0);",
" return vec4(x,y,z,w)/255.0;",
"}",
"int unpackIndex(vec4 v){",
" return int(v.x*255.0 + v.y*255.0*256.0 + v.z*255.0*256.0*256.0);",
"}",
"int unpackDepth(vec4 v){",
" return int(v.w*255.0);",
"}",
].join("\n");
writer = buildShader(
["precision highp float;",
"attribute float resultIndex;",
"uniform sampler2D resultTexture;",
"uniform float resultTextureSide;",
"uniform float resultGridSide;",
"uniform float resultSquareSide;",
"uniform float targetTextureSide;",
"varying vec4 value;",
defaultLib,
"void main(){",
" float resultSquareIndex = mod(resultIndex, resultSquareSide*resultSquareSide/2.0);",
" vec2 resultSquareCoord = indexToPos(vec2(resultSquareSide/2.0,resultSquareSide), resultSquareIndex)*vec2(2.0,1.0);",
" vec2 resultGridCoord = indexToPos(vec2(resultGridSide), floor(resultIndex/(resultSquareSide*resultSquareSide/2.0)));",
" vec2 resultCoord = resultGridCoord * resultSquareSide + resultSquareCoord;",
" vec2 indexCoord = (resultCoord+vec2(0.5,0.5))/resultTextureSide;",
" vec2 valueCoord = (resultCoord+vec2(1.5,0.5))/resultTextureSide;",
" float index = float(unpackIndex(texture2D(resultTexture, indexCoord))-1);",
" float depth = float(unpackDepth(texture2D(resultTexture, indexCoord)));",
" value = texture2D(resultTexture, valueCoord);",
" vec2 rPos = (indexToPos(vec2(targetTextureSide),index)+vec2(0.5))/targetTextureSide*2.0-1.0;",
" gl_Position = vec4(depth > 0.5 ? rPos : vec2(-1.0,-1.0), (255.0-depth)/255.0, 1.0);",
//" gl_Position = vec4(rPos, -0.5, 1.0);",
" gl_PointSize = 1.0;",
"}"].join("\n"),
["precision highp float;",
"varying vec4 value;",
"void main(){",
" gl_FragColor = value;",
"}"].join("\n"));
renderer = buildShader(
["precision highp float;",
"attribute vec2 vertexPos;",
"varying vec2 pos;",
"void main(){",
" pos = vertexPos;",
" gl_Position = vec4(vertexPos, 0.0, 1.0);",
"}"].join("\n"),
["precision mediump float;",
"uniform sampler2D array;",
"varying vec2 pos;",
"void main(){",
" gl_FragColor = texture2D(array, pos*0.5+0.5);",
"}"].join("\n"));
gl.clearDepth(256.0);
vertexIndexBuffer = gl.createBuffer();
rendererVertexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, rendererVertexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([1,1,-1,-1,1,-1,1,1,-1,1,-1,-1]), gl.STATIC_DRAW);
resultTexture = gl.createTexture();
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, resultTexture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
framebuffer = gl.createFramebuffer();
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
return monkeysApi;
};
// *Monkeys => Number -> Monkeys
// Makes sure there are enough index vertices available
// for a `gl.drawArrays(gl.POINTS, 0, vertices)` call.
function allocVertexIndices(indices){
if (indices > maxVertexIndex){
maxVertexIndex = Math.pow(fitTextureSide(indices), 2);
var vertexIndexArray = new Float32Array(maxVertexIndex);
for (var i=0; i<maxVertexIndex; ++i)
vertexIndexArray[i] = i;
gl.bindBuffer(gl.ARRAY_BUFFER, vertexIndexBuffer);
gl.bufferData(gl.ARRAY_BUFFER, vertexIndexArray, gl.STATIC_DRAW);
gl.bindBuffer(gl.ARRAY_BUFFER, null);
};
};
// *Monkeys => Number -> ()
// Makes sure the results texture is big
// enough to fit every result of a task.
function allocResultTexture(usedTextureSide){
if (usedTextureSide > resultTextureSide){
resultTextureSide = usedTextureSide;
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, resultTexture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, resultTextureSide, resultTextureSide, 0, gl.RGBA, gl.UNSIGNED_BYTE, null);
}
};
// *Monkeys => String, String -> WebGLProgram
function buildShader(vertexSrc, fragmentSrc){
function compile(type, shaderSource){
var shader = gl.createShader(type);
gl.shaderSource(shader, shaderSource);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)){
var errorMsg = "WebMonkeys had the following error from WebGL: " + gl.getShaderInfoLog(shader);
if (errorMsg.indexOf("syntax error") !== -1)
errorMsg += "This could be fixed by adding extra `;` before setters.";
throw errorMsg;
}
return shader;
}
var vertexShader = compile(gl.VERTEX_SHADER, vertexSrc);
var fragmentShader = compile(gl.FRAGMENT_SHADER, fragmentSrc);
var shader = gl.createProgram();
gl.attachShader(shader, vertexShader);
gl.attachShader(shader, fragmentShader);
gl.linkProgram(shader);
if(!gl.getProgramParameter(shader, gl.LINK_STATUS))
throw "Error linking shaders.";
return shader;
}
// Number -> Number
function fitTextureSide(elements){
return Math.pow(2, Math.ceil(Math.log(Math.sqrt(elements))/Math.log(2)));
};
// Number -> Number
function fract(x){
return x - Math.floor(x);
};
// *Monkeys => String -> Maybe (Either (Array Number) *Uint32Array)
function get(name){
var array = arrayByName[name];
if (!array) return null;
var targetArray = array.uint32Array;
var pixels = targetArray
? new Uint8Array(targetArray.buffer) // re-uses existing buffer
: new Uint8Array(array.textureSide*array.textureSide*4);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, array.texture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, null);
gl.readPixels(0, 0, array.textureSide, array.textureSide, gl.RGBA, gl.UNSIGNED_BYTE, pixels);
if (!targetArray){
var result = [];
for (var i=0, l=array.length; i<l; ++i){
var s = pixels[i*4+3] >= 128 ? 1 : -1;
var e = pixels[i*4+3] - (pixels[i*4+3] >= 128 ? 128 : 0) - 63;
var m = 1 + pixels[i*4+0]/256/256/256 + pixels[i*4+1]/256/256 + pixels[i*4+2]/256;
var n = s * Math.pow(2, e) * m;
var z = 0.000000000000000001; // to avoid annoying floating point error for 0
result.push(-z < n && n < z ? 0 : n);
};
return result;
} else {
return targetArray;
}
};
// *Monkeys => String, *Uint32Array -> Monkeys
// *Monkeys => String, Array Number -> Monkeys
// *Monkeys => String, Number -> Monkeys
function set(name, lengthOrArray){
if (typeof lengthOrArray === "number"){
var length = lengthOrArray;
var textureSide = fitTextureSide(length);
var array = null;
} else {
var length = lengthOrArray.length;
var textureSide = fitTextureSide(length);
if (lengthOrArray instanceof Array) { // upload JS Numbers as Floats
var array = new Uint8Array(textureSide*textureSide*4);
for (var i=0, l=lengthOrArray.length; i<l; ++i){
var x = lengthOrArray[i];
var s = x > 0 ? 1 : -1;
var e = Math.floor(Math.log2(s*x));
var m = s*x/Math.pow(2, e);
array[i*4+0] = Math.floor(fract((m-1)*256*256)*256)||0;
array[i*4+1] = Math.floor(fract((m-1)*256)*256)||0;
array[i*4+2] = Math.floor(fract((m-1)*1)*256)||0;
array[i*4+3] = ((e+63) + (x>0?128:0))||0;
};
} else { // upload 32-bit Uints as Vec4s
if (textureSide * textureSide !== length)
throw "WebMonkey error: when on raw buffer mode, the length of your\n"
+ "buffer must be (2^n)^2 for a positive integer n. That is, it\n"
+ "could be 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144\n"
+ "and so on. Your '"+name+"' buffer has length "+length+".";
var array = new Uint8Array(lengthOrArray.buffer);
}
}
gl.activeTexture(gl.TEXTURE0);
if (!arrayByName[name]){
var texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, textureSide, textureSide, 0, gl.RGBA, gl.UNSIGNED_BYTE, array);
var depthbuffer = gl.createRenderbuffer();
gl.bindRenderbuffer(gl.RENDERBUFFER, depthbuffer);
gl.renderbufferStorage(gl.RENDERBUFFER, gl.DEPTH_COMPONENT16, textureSide, textureSide);
arrayByName[name] = {
name: name,
uint32Array: lengthOrArray instanceof Uint32Array ? lengthOrArray : null,
valueType: lengthOrArray instanceof Uint32Array ? "vec4" : "float",
texture: texture,
depthbuffer: depthbuffer,
textureName: name+"_",
textureSide: textureSide,
length: length};
arrays.push(arrayByName[name]);
} else {
var texture = arrayByName[name].texture;
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, textureSide, textureSide, 0, gl.RGBA, gl.UNSIGNED_BYTE, array);
}
return monkeysApi;
};
// *Monkeys => String, Number -> Monkeys
// Fills an array with a floating point number
function fill(name, x){
var array = arrayByName[name];
// Since the float packing on the set function is
// inlined for performance, it must be duplicated
// here. FIXME: find a way to avoid this.
var s = x > 0 ? 1 : -1;
var e = Math.floor(Math.log2(s*x));
var m = s*x/Math.pow(2, e);
var a = Math.floor(fract((m-1)*256*256)*256)||0;
var b = Math.floor(fract((m-1)*256)*256)||0;
var c = Math.floor(fract((m-1)*1)*256)||0;
var d = ((e+63) + (x>0?128:0))||0;
return clear(name, ((d<<24)+(c<<16)+(b<<8)+a));
};
// *Monkeys => String, Uint32 -> Monkeys
// Fills an array with an Uint32
function clear(name, value){
var array = arrayByName[name];
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, array.texture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, null);
gl.clearColor(
((value&0x000000FF) >>> 0)/255,
((value&0x0000FF00) >>> 8)/255,
((value&0x00FF0000) >>> 16)/255,
((value&0xFF000000) >>> 24)/255);
gl.clear(gl.COLOR_BUFFER_BIT)
return monkeysApi;
};
// *Monkeys => String -> Monkeys
function del(name){
var existingArray;
if (existingArray = arraysByName[name]){
delete arraysByName[name];
arrays = arrays.filter(function(arr){
return arr !== existingArray;
});
gl.deleteTexture(existingArray.texture);
};
return monkeysApi;
};
// String -> Maybe {name: String, index: String, depth: String, value: String}
// Parses a setter statement such as `foo(i*8) := bar(i*8) + baz(i*8);` and
// returns `name`, `index`, `depth` and `value` strings:
// {name: "foo", index: "i*8", depth: "", value: "bar(i*8) + baz(i*8)"}
function parseSetterStatement(statement){
var name = "";
var index = "";
var depth = "";
var value = "";
var phase = 0;
var brackets = 1;
for (var i=0, l=statement.length; i < l; ++i){
var chr = statement[i];
switch (phase){
case 0:
if (chr === "(")
phase = 1;
else if (chr !== " " && chr !== "\n")
name += chr;
break;
case 1:
if (chr === "(")
++brackets;
else if (chr === ")")
--brackets;
if (brackets === 1 && chr === ",")
phase = 2;
else if (brackets === 0)
phase = 3;
else
index += chr;
break;
case 2:
if (chr === "(")
++brackets;
else if (chr === ")")
--brackets;
if (brackets === 0)
phase = 3;
else
depth += chr;
break;
case 3:
if (chr === ":")
phase = 4;
break;
case 4:
if (chr === "=")
phase = 5;
else
return null;
break;
case 5:
if (chr !== " ")
value += chr,
phase = 6;
break;
case 6:
if (chr === ";")
phase = 7;
else
value += chr;
break;
};
};
return phase === 7
? {name: name,
index: index,
depth: depth,
value: value}
: null;
};
// String -> {
// shader: GLShader,
// usedResults: Number,
// allocResults: Number,
// resultArrayName: String,
// usesDepth: Bool}
function buildTask(task){
if (shaderByTask[task])
return shaderByTask[task];
var usesDepth = false;
var taskStatements = task.split(";");
taskStatements.pop();
var setters = [];
var setter;
while (setter = parseSetterStatement(taskStatements[taskStatements.length-1]+";")){
setters.push(setter);
taskStatements.pop();
if (setter.depth !== "0")
usesDepth = true;
};
if (setters.length === 0)
throw "Error parsing Monkey task: tasks must end with a setter statement such as `foo[0] = 0;`.";
var resultArrayName = setters[0].name;
for (var i=1, l=setters.length; i<l; ++i)
if (setters[i].name !== resultArrayName)
throw "Error parsing Monkey task: you can't write to different arrays on the same task.";
var taskWithoutSetters = taskStatements.join(";")+";";
// `usedResults` is how many sets this work does.
// `allocResults` is how many sets we actually allocated space for.
// Explanation: a result is an (indice, value) pair which will be used on
// the next pass to fill the target array. Those results are recorded
// into square sections of a 2D texture. Each monkey has its own square.
// In order for everything to fit, the square of a monkey will have empty
// space. For example, if a task makes 3 sets, it requires 6 pixels on
// the texture report its result (3 indices + 3 values). To fit 6 pixels,
// we need a square of side 4; side 2 isn't enough because it only fits 4
// pixels, side 3 isn't allowed because such a square wouldn't align
// correctly on the texture.
// TODO: complete this explanation, move it to the top, make some drawings
var usedResults = setters.length;
var allocResults = Math.pow(fitTextureSide(usedResults*2),2)/2;
var getters = "";
for (var i=0, l=arrays.length; i<l; ++i)
getters
+= "uniform sampler2D "+arrays[i].textureName+";\n"
+ arrays[i].valueType+" "+arrays[i].name+"(float idx){\n"
+ " return "+(arrays[i].valueType==="float"?"unpackFloat":"unpackVec4")+"(texture2D("+arrays[i].textureName+",indexToPos(vec2("+arrays[i].textureSide.toFixed(1)+"), idx)/"+arrays[i].textureSide.toFixed(2)+"));\n"
+ "}\n"
+ arrays[i].valueType+" "+arrays[i].name+"(int idx){\n"
+ " return "+arrays[i].name+"(float(idx));\n"
+ "}\n";
var setterFns = "";
for (var i=0; i<allocResults; ++i){
setterFns += "void set"+i+"(int i"+i+", int d"+i+", float v"+i+"){\n";
setterFns += " results["+(i*2+0)+"] = packIndexDepth(i"+i+"+1, d"+i+");\n"
setterFns += " results["+(i*2+1)+"] = packFloat(v"+i+");\n"
setterFns += "}\n";
setterFns += "void set"+i+"(int i"+i+", int d"+i+", vec4 v"+i+"){\n";
setterFns += " results["+(i*2+0)+"] = packIndexDepth(i"+i+"+1, d"+i+");\n"
setterFns += " results["+(i*2+1)+"] = packVec4(v"+i+");\n"
setterFns += "}\n";
};
var writeToTexture = "";
for (var i=0; i<allocResults*2; ++i)
writeToTexture += " if (idx == "+i+") gl_FragColor = results["+i+"];\n";
var setter = "";
for (var i=0; i < allocResults; ++i){
setter += " set"+i+"(";
setter += i < usedResults
? setters[i].index+", "
+ (setters[i].depth||"1")+", "
+ setters[i].value
: "0, 0, vec4(0.0)";
setter += ");\n";
};
var vertexShader = [
"precision highp float;",
"uniform float resultTextureSide;",
"uniform float resultGridSide;",
"uniform float resultSquareSide;",
"attribute float resultIndex;",
"varying float resultIndexVar;",
"varying vec4 results["+(allocResults*2)+"];",
defaultLib,
getters,
setterFns,
userLib,
"vec4 scaleToScreen(vec2 pos){",
" vec2 screenCoord = scaleRange(vec2(0.0,0.0), vec2(resultGridSide), vec2(-1.0), vec2(-1.0+resultSquareSide*resultGridSide/resultTextureSide*2.0), pos);",
" return vec4(screenCoord + vec2(resultSquareSide)/resultTextureSide, 1.0, 1.0);",
"}",
"void main(){",
" int i = int(resultIndex);",
" float f = resultIndex;",
taskWithoutSetters,
setter,
" gl_PointSize = resultSquareSide;",
" gl_Position = scaleToScreen(indexToPos(vec2(resultGridSide), resultIndex));",
" resultIndexVar = resultIndex;",
"}"].join("\n")
var fragmentShader = [
"precision highp float;",
"varying float resultIndexVar;",
"varying vec4 results["+(allocResults*2)+"];",
"uniform float resultSquareSide;",
defaultLib,
"void main(){",
" vec2 coord = floor(gl_PointCoord * resultSquareSide);",
" int idx = int((resultSquareSide-1.0-coord.y) * resultSquareSide + coord.x);",
writeToTexture,
"}"].join("\n");
var shader = buildShader(vertexShader, fragmentShader);
return shaderByTask[task] = {
usesDepth: usesDepth,
usedResults: usedResults,
allocResults: allocResults,
shader: shader,
resultArrayName: resultArrayName};
};
// *Monkeys => Number, String -> Monkeys
function work(monkeyCount, taskSource){
var task = buildTask(taskSource);
var resultArray = arrayByName[task.resultArrayName];
var resultSquareSide = fitTextureSide(task.allocResults*2);
var resultGridSide = fitTextureSide(monkeyCount);
var usedResultTextureSide = resultGridSide * resultSquareSide;
var resultSquareSide = fitTextureSide(task.allocResults*2);
var resultGridSide = fitTextureSide(monkeyCount);
var usedResultTextureSide = resultGridSide * resultSquareSide;
allocResultTexture(usedResultTextureSide);
allocVertexIndices(Math.max(monkeyCount, monkeyCount*resultSquareSide*resultSquareSide/2));
gl.useProgram(task.shader);
gl.bindBuffer(gl.ARRAY_BUFFER, vertexIndexBuffer);
gl.bindFramebuffer(gl.FRAMEBUFFER, framebuffer);
gl.uniform1f(gl.getUniformLocation(task.shader,"resultGridSide"), resultGridSide);
gl.uniform1f(gl.getUniformLocation(task.shader,"resultSquareSide"), resultSquareSide);
gl.uniform1f(gl.getUniformLocation(task.shader,"resultTextureSide"), resultTextureSide);
gl.vertexAttribPointer(gl.getAttribLocation(task.shader,"resultIndex"), 1, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(gl.getAttribLocation(task.shader,"resultIndex"));
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, resultTexture, 0);
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, null);
gl.viewport(0, 0, resultTextureSide, resultTextureSide);
for (var i=0, l=arrays.length; i<l; ++i){
gl.activeTexture(gl.TEXTURE0+i);
gl.bindTexture(gl.TEXTURE_2D, arrays[i].texture);
gl.uniform1i(gl.getUniformLocation(task.shader,arrays[i].textureName), i);
}
gl.drawArrays(gl.POINTS, 0, monkeyCount);
if (task.usesDepth) gl.enable(gl.DEPTH_TEST);
gl.useProgram(writer);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, resultTexture);
gl.uniform1i(gl.getUniformLocation(writer,"resultTexture"), resultTexture);
gl.uniform1f(gl.getUniformLocation(writer,"resultGridSide"), resultGridSide);
gl.uniform1f(gl.getUniformLocation(writer,"resultSquareSide"), resultSquareSide);
gl.uniform1f(gl.getUniformLocation(writer,"resultTextureSide"), resultTextureSide);
gl.uniform1f(gl.getUniformLocation(writer,"targetTextureSide"), resultArray.textureSide);
gl.vertexAttribPointer(gl.getAttribLocation(writer,"resultIndex"), 1, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(gl.getAttribLocation(writer,"resultIndex"));
gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, gl.TEXTURE_2D, resultArray.texture, 0);
gl.viewport(0, 0, resultArray.textureSide, resultArray.textureSide);
if (task.usesDepth){
gl.framebufferRenderbuffer(gl.FRAMEBUFFER, gl.DEPTH_ATTACHMENT, gl.RENDERBUFFER, resultArray.depthbuffer);
gl.clear(gl.DEPTH_BUFFER_BIT)
};
gl.drawArrays(gl.POINTS, 0, monkeyCount*resultSquareSide*resultSquareSide/2);
if (task.usesDepth) gl.disable(gl.DEPTH_TEST);
return monkeysApi;
};
// Allows rendering arrays to a Canvas for visualization
// *Monkeys => String, Number, Number -> Maybe Canvas
function render(name, width, height){
if (gl.canvas && arrayByName[name]){
gl.canvas.width = width;
gl.canvas.height = height;
gl.useProgram(renderer);
gl.viewport(0, 0, width, height);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, arrayByName[name].texture);
gl.bindBuffer(gl.ARRAY_BUFFER, rendererVertexBuffer);
var vertexPosAttr = gl.getAttribLocation(renderer, "vertexPos")
gl.vertexAttribPointer(vertexPosAttr, 2, gl.FLOAT, false, 0, 0);
gl.enableVertexAttribArray(vertexPosAttr);
gl.bindFramebuffer(gl.FRAMEBUFFER, null);
gl.drawArrays(gl.TRIANGLES, 0, 6);
return gl.canvas;
}
return null;
};
// *Monkeys => String -> Monkeys
function lib(source){
userLib = source;
return monkeysApi;
};
// Monkeys => String -> String
function stringify(name){
return JSON.stringify(get(name));
};
// Monkeys => String -> IO ()
function log(name){
console.log(stringify(name))
};
var monkeysApi = {
set: set,
get: get,
del: del,
lib: lib,
work: work,
clear: clear,
fill: fill,
render: render,
stringify: stringify,
log: log
};
return init();
}
if (typeof window === 'object')
exports.WebMonkeys = WebMonkeys;
if (typeof module !== "undefined")
module.exports = WebMonkeys;
});
function load(root, factory) {
'use strict';
// amd
if (typeof define === 'function' && define.amd)
// register as an anonymous module
define([], factory);
// commonjs
else if (typeof exports === 'object' && typeof exports.nodeName !== 'string')
factory(exports);
// browser globals
else
factory(root);
}
</script>
</head>
<body>
<center><h3>Web Test</h3></center>
<div></div>
<script>
const monkey = WebMonkeys();
if (typeof window === 'object')
var monkeys = WebMonkeys();
else
var monkeys = require("./../src/WebMonkeys")();
// Using the good old map reduce to sum numbers in parallel. First we set and
// fill an initial array. Then, on each pass, each monkey is responsible for
// summing a bunch of numbers and storing the result on the same array. For the
// case where each monkey sums just 2 numbers, we get this:
// [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (initial array, 32 numbers)
// [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] (16 monkeys, each adds 2 numbers of the 32)
// [4,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ( 8 monkeys, each adds 2 numbers of the remaining 16)
// [8,8,8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ( 4 monkeys, each adds 2 numbers of the remaining 8)
// [16,16,8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ( 2 monkeys, each adds 2 numbers of the remaining 4)
// [32,16,8,8,4,4,4,4,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ( 1 monkey, which adds the remaining 2)
// The last monkey then sums the leftover nums and put it on the result array.
// Note: this example is only about 4x faster than the CPU because it finishes
// quickly (~0.2s), so most of the time is spent on the compilation. If you
// call the same task again, it returns much faster (as it is already compiled).
// Sequential search
console.log("Searching for 987654321 on the CPU.");
var t = Date.now();
var found = false;
for (var i=0; i<1000000000; ++i)
if (i === 987654321)
found = true;
console.log("Found on the CPU? "+found+" (time: "+(Date.now()-t)/1000+"s)");
// Parallel search
console.log("Searching for 987654321 on the GPU.");
var t = Date.now();
var totalMonkeys = 20000;
var attemptsPerMonkey = 60000;
var monkeyStartingNumber = [];
for (var i=0; i<totalMonkeys; ++i)
monkeyStartingNumber.push(i * attemptsPerMonkey);
monkeys.set("found", [0]);
monkeys.set("monkeyStartingNumber", monkeyStartingNumber);
monkeys.work(totalMonkeys, `
int startingNumber = int(monkeyStartingNumber(i));
bool gotIt = false;
for (int i = 0; i < ${attemptsPerMonkey}; ++i)
if (startingNumber + i == 987654321)
gotIt = true;
found(gotIt ? 0 : 1) := 1.0;
`);
console.log("Found on the GPU? "+(!!monkeys.get("found")[0])+" (time: "+(Date.now()-t)/1000+"s)");
</script>
</body>
Also see: Tab Triggers