Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div id="webgl"></div>

<!-- vertexShader -->
<script id="js-vertex-shader" type="x-shader/x-vertex">
attribute vec3 position;
attribute vec3 color;
attribute float alpha;
attribute float rand;
uniform mat4 modelViewMatrix;
uniform mat4 projectionMatrix;
uniform float u_ratio;
uniform float u_time;
varying vec3 v_color;
varying float v_alpla;

//
// Description : Array and textureless GLSL 2D/3D/4D simplex
//               noise functions.
//      Author : Ian McEwan, Ashima Arts.
//  Maintainer : ijm
//     Lastmod : 20110822 (ijm)
//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.
//               Distributed under the MIT License. See LICENSE file.
//               https://github.com/ashima/webgl-noise
//

vec3 mod289(vec3 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 mod289(vec4 x) {
  return x - floor(x * (1.0 / 289.0)) * 289.0;
}

vec4 permute(vec4 x) {
     return mod289(((x*34.0)+1.0)*x);
}

vec4 taylorInvSqrt(vec4 r)
{
  return 1.79284291400159 - 0.85373472095314 * r;
}

float snoise(vec3 v)
  {
  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
  vec3 i  = floor(v + dot(v, C.yyy) );
  vec3 x0 =   v - i + dot(i, C.xxx) ;

// Other corners
  vec3 g = step(x0.yzx, x0.xyz);
  vec3 l = 1.0 - g;
  vec3 i1 = min( g.xyz, l.zxy );
  vec3 i2 = max( g.xyz, l.zxy );

  //   x0 = x0 - 0.0 + 0.0 * C.xxx;
  //   x1 = x0 - i1  + 1.0 * C.xxx;
  //   x2 = x0 - i2  + 2.0 * C.xxx;
  //   x3 = x0 - 1.0 + 3.0 * C.xxx;
  vec3 x1 = x0 - i1 + C.xxx;
  vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
  vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y

// Permutations
  i = mod289(i);
  vec4 p = permute( permute( permute(
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
  float n_ = 0.142857142857; // 1.0/7.0
  vec3  ns = n_ * D.wyz - D.xzx;

  vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)

  vec4 x_ = floor(j * ns.z);
  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  vec4 x = x_ *ns.x + ns.yyyy;
  vec4 y = y_ *ns.x + ns.yyyy;
  vec4 h = 1.0 - abs(x) - abs(y);

  vec4 b0 = vec4( x.xy, y.xy );
  vec4 b1 = vec4( x.zw, y.zw );

  //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
  //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
  vec4 s0 = floor(b0)*2.0 + 1.0;
  vec4 s1 = floor(b1)*2.0 + 1.0;
  vec4 sh = -step(h, vec4(0.0));

  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  vec3 p0 = vec3(a0.xy,h.x);
  vec3 p1 = vec3(a0.zw,h.y);
  vec3 p2 = vec3(a1.xy,h.z);
  vec3 p3 = vec3(a1.zw,h.w);

//Normalise gradients
  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

// Mix final noise value
  vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
  m = m * m;
  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
                                dot(p2,x2), dot(p3,x3) ) );
  }	
	
void main() {
    v_color = color;
    v_alpla = alpha;

    vec3 vertexDirection = vec3(normalize(position.xy), 0.0) + vec3(u_time);
    vec3 noise = position * snoise(vec3(vertexDirection)) * 5.0 * u_ratio;
    vec3 diffuse = vertexDirection * 100.0 * u_ratio * rand;
    vec3 finalPosition = position + noise + diffuse;

    gl_Position = projectionMatrix * modelViewMatrix * vec4(finalPosition, 1.0 );
    gl_PointSize = 6.0;
}
</script>

<!-- fragmentShader -->
<script id="js-fragment-shader" type="x-shader/x-fragment">
	precision mediump float;

varying vec3 v_color;
varying float v_alpla;

void main() {
    vec2 temp = gl_PointCoord - vec2(0.5);
    float f = dot(temp, temp);
    if (f > 0.25 ) {
        discard;
    }

    gl_FragColor = vec4(v_color, v_alpla);
}
</script>
              
            
!

CSS

              
                * {
	margin: 0;
	padding: 0;
}

#webgl {
	position: fixed;
	top: 0;
	left: 0;
	width: 100%;
	height: 100%;
}

              
            
!

JS

              
                function ImagePixel(path, w, h, ratio) {
	const canvas = document.createElement("canvas");
	const ctx = canvas.getContext("2d");
	const width = w;
	const height = h;
	canvas.width = width;
	canvas.height = height;

	ctx.drawImage(path, 0, 0);
	const data = ctx.getImageData(0, 0, width, height).data;
	const position = [];
	const color = [];
	const alpha = [];

	for (let y = 0; y < height; y += ratio) {
		for (let x = 0; x < width; x += ratio) {
			const index = (y * width + x) * 4;
			const r = data[index] / 255;
			const g = data[index + 1] / 255;
			const b = data[index + 2] / 255;
			const a = data[index + 3] / 255;

			const pX = x - width / 2;
			const pY = -(y - height / 2);
			const pZ = 0;

			position.push(pX, pY, pZ), color.push(r, g, b), alpha.push(a);
		}
	}

	return { position, color, alpha };
}

class Stage {
	constructor() {
		this.renderParam = {
			clearColor: 0x000000,
			width: window.innerWidth,
			height: window.innerHeight
		};
		this.cameraParam = {
			fov: 45,
			near: 0.1,
			far: 2000,
			lookAt: new THREE.Vector3(0, 0, 0),
			x: 0,
			y: 0,
			z: 1000
		};

		this.scene = null;
		this.camera = null;
		this.renderer = null;
		this.isInitialized = false;
		this.orbitcontrols = null;
		this.isDev = false;
	}

	init() {
		this._setScene();
		this._setRender();
		this._setCamera();
		this._setDev();
	}

	_setScene() {
		this.scene = new THREE.Scene();
	}

	_setRender() {
		this.renderer = new THREE.WebGLRenderer();
		this.renderer.setPixelRatio(window.devicePixelRatio);
		this.renderer.setClearColor(new THREE.Color(this.renderParam.clearColor));
		this.renderer.setSize(this.renderParam.width, this.renderParam.height);
		const wrapper = document.querySelector("#webgl");
		wrapper.appendChild(this.renderer.domElement);
	}

	_setCamera() {
		if (!this.isInitialized) {
			this.camera = new THREE.PerspectiveCamera(
				0,
				0,
				this.cameraParam.near,
				this.cameraParam.far
			);

			this.camera.position.set(
				this.cameraParam.x,
				this.cameraParam.y,
				this.cameraParam.z
			);
			this.camera.lookAt(this.cameraParam.lookAt);

			this.isInitialized = true;
		}

		const windowWidth = window.innerWidth;
		const windowHeight = window.innerHeight;
		this.camera.aspect = windowWidth / windowHeight;
		this.camera.fov = this.cameraParam.fov;

		this.camera.updateProjectionMatrix();
		this.renderer.setSize(windowWidth, windowHeight);
	}

	_setDev() {
		this.orbitcontrols = new THREE.OrbitControls(
			this.camera,
			this.renderer.domElement
		);
		this.orbitcontrols.enableDamping = true;
		this.isDev = true;
	}

	_render() {
		this.renderer.render(this.scene, this.camera);
		if (this.isDev) this.orbitcontrols.update();
	}

	onResize() {
		this._setCamera();
	}

	onRaf() {
		this._render();
	}
}

class Particle {
	constructor(stage) {
		this.stage = stage;
		this.promiseList = [];
		this.pathList = [
			"https://hisamikurita.github.io/codepen-sample-images/dist/assets/images/logo.png"
		];
		this.imageList = [];
	}

	init() {
		this.pathList.forEach((image) => {
			this.promiseList.push(
				new Promise((resolve) => {
					const img = new Image();
					img.src = image;
					img.crossOrigin = "anonymous";

					img.addEventListener("load", () => {
						this.imageList.push(ImagePixel(img, img.width, img.height, 5.0));
						resolve();
					});
				})
			);
		});
		Promise.all(this.promiseList).then(() => {
			this._setMesh();
			this._setAutoPlay();
		});
	}

	_setMesh() {
		const geometry = new THREE.BufferGeometry();
		const position = new THREE.BufferAttribute(
			new Float32Array(this.imageList[0].position),
			3
		);
		const color = new THREE.BufferAttribute(
			new Float32Array(this.imageList[0].color),
			3
		);
		const alpha = new THREE.BufferAttribute(
			new Float32Array(this.imageList[0].alpha),
			1
		);
		const rand = [];
    for (let i = 0; i < position.length / 3; i++) {
      rand.push(Math.random() - 1.0);
    }
    const rands = new THREE.BufferAttribute(new Float32Array(rand), 1);
		geometry.setAttribute("position", position);
		geometry.setAttribute("color", color);
		geometry.setAttribute("alpha", alpha);
    geometry.setAttribute('rand', rands);

		const material = new THREE.RawShaderMaterial({
			vertexShader: document.querySelector("#js-vertex-shader").textContent,
			fragmentShader: document.querySelector("#js-fragment-shader").textContent,
			uniforms: {
				u_ratio: { type: "f", value: 0.0 },
				        u_time: { type: 'f', value: 0.0 },
			},
			transparent: true
		});
		this.mesh = new THREE.Points(geometry, material);
		this.stage.scene.add(this.mesh);
	}

	_setDiffusion() {
		gsap.to(this.mesh.material.uniforms.u_ratio, {
			value: 1.0,
			duration: 1.8,
			ease: "power1.inOut",
			repeat: 1,
			yoyo: true
		});
	}

	_setAutoPlay() {
		this._setDiffusion();

		gsap.to(
			{},
			{
				ease: "none",
				duration: 4.2,
				repeat: -1.0,
				onRepeat: () => {
					this._setDiffusion();
				}
			}
		);
	}

	_render() {
		    if(this.mesh) this.mesh.material.uniforms.u_time.value += 0.001;
	}

	onResize() {
		//
	}

	onRaf() {
		this._render();
	}
}

class Webgl {
	constructor() {
		const stage = new Stage();
		stage.init();

		const particle = new Particle(stage);
		particle.init();

		window.addEventListener("resize", () => {
			stage.onResize();
			particle.onResize();
		});

		const _raf = () => {
			window.requestAnimationFrame(() => {
				_raf();

				stage.onRaf();
				particle.onRaf();
			});
		};
		_raf();
	}
}

new Webgl();

              
            
!
999px

Console