HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URL's added here will be added as <link>
s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
If the stylesheet you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<canvas id="screen"></canvas>
html, body {
touch-action:none;
content-zooming:none;
margin: 0;
padding: 0;
background: #333;
position: absolute;
width: 100%;
height: 100%;
}
#screen {
width:100%;
height:100%;
margin:auto auto;
position: fixed;
top: 0;
bottom: 0;
left: 0;
right: 0;
background: #000;
cursor: pointer;
}
! function ()
{
"use strict";
/* ==== screen setup ==== */
var screen = {
elem: document.getElementById("screen"),
width: 0,
height: 0,
top: 0,
left: 0,
resize: function ()
{
var o = screen.elem;
screen.width = o.offsetWidth;
screen.height = o.offsetHeight;
for (screen.left = 0, screen.top = 0; o != null; o = o.offsetParent)
{
screen.left += o.offsetLeft;
screen.top += o.offsetTop;
}
screen.elem.width = screen.width;
screen.elem.height = screen.height;
if (PHY2D)
{
PHY2D.deleteStatic();
PHY2D.rectangle(screen.width / 2, screen.height + 50, screen.width, 100, 0, 0);
PHY2D.rectangle(screen.width / 2, -screen.height * 2, screen.width, 100, 0, 0);
PHY2D.rectangle(-50, 0, 100, screen.height * 4, 0, 0);
PHY2D.rectangle(screen.width + 50, 0, 100, screen.height * 4, 0, 0);
}
}
}
screen.elem.onselectstart = function ()
{
return false;
}
screen.elem.ondrag = function ()
{
return false;
}
var ctx = screen.elem.getContext("2d");
window.addEventListener('resize', screen.resize, false);
/* ==== pointer setup ==== */
var pointer = {
pos:
{
x: 0,
y: 0
},
active: false,
down: function (e, touch)
{
e.preventDefault();
var p = touch ? e.touches[0] : e;
(!touch && document.setCapture) && document.setCapture();
this.pos.x = p.clientX - screen.left;
this.pos.y = p.clientY - screen.top;
this.active = true;
},
up: function (e, touch)
{
e.preventDefault();
(!touch && document.releaseCapture) && document.releaseCapture();
this.active = false;
},
move: function (e, touch)
{
e.preventDefault();
var p = touch ? e.touches[0] : e;
if (this.active)
{
this.pos.x = p.clientX - screen.left;
this.pos.y = p.clientY - screen.top;
}
}
}
if ('ontouchstart' in window)
{
screen.elem.ontouchstart = function (e)
{
pointer.down(e, true);
}.bind(pointer);
screen.elem.ontouchmove = function (e)
{
pointer.move(e, true);
}.bind(pointer);
screen.elem.ontouchend = function (e)
{
pointer.up(e, true);
}.bind(pointer);
screen.elem.ontouchcancel = function (e)
{
pointer.up(e, true);
}.bind(pointer);
}
document.addEventListener("mousedown", function (e)
{
pointer.down(e, false);
}.bind(pointer), true);
document.addEventListener("mousemove", function (e)
{
pointer.move(e, false);
}.bind(pointer), true);
document.addEventListener("mouseup", function (e)
{
pointer.up(e, false);
}.bind(pointer), true);
/* ==== vector 2D library ==== */
function Vector(x, y)
{
this.x = x || 0.0;
this.y = y || 0.0;
}
Vector.prototype = {
set: function (x, y)
{
this.x = x;
this.y = y;
return this;
},
dot: function (v)
{
return this.x * v.x + this.y * v.y;
},
lenSqr: function ()
{
return this.x * this.x + this.y * this.y;
},
transform: function (v, m)
{
this.x = m.cos * v.x - m.sin * v.y + m.pos.x;
this.y = m.sin * v.x + m.cos * v.y + m.pos.y;
return this;
},
rotate: function (v, m)
{
this.x = m.cos * v.x - m.sin * v.y;
this.y = m.sin * v.x + m.cos * v.y;
return this;
},
normal: function (a, b)
{
var x = a.x - b.x,
y = a.y - b.y,
len = Math.sqrt(x * x + y * y);
this.x = -y / len;
this.y = x / len;
return this;
},
project: function (a, b, n)
{
var x = a.x - b.x,
y = a.y - b.y,
len = Math.sqrt(x * x + y * y);
return (-y / len) * n.x + (x / len) * n.y;
},
addScale: function (v1, v2, s)
{
this.x = v1.x + (v2.x * s);
this.y = v1.y + (v2.y * s);
return this;
},
subScale: function (v1, v2, s)
{
this.x = v1.x - (v2.x * s);
this.y = v1.y - (v2.y * s);
return this;
},
add: function (v1, v2)
{
this.x = v1.x + v2.x;
this.y = v1.y + v2.y;
return this;
},
sub: function (v1, v2)
{
this.x = v1.x - v2.x;
this.y = v1.y - v2.y;
return this;
},
scale: function (v1, s)
{
this.x = v1.x * s;
this.y = v1.y * s;
return this;
},
perp: function ()
{
var x = this.x;
this.x = -this.y;
this.y = x;
return this;
},
inv: function (v1)
{
this.x = -v1.x;
this.y = -v1.y;
return this;
},
clamp: function (v, min, max)
{
if (v > max) v = max;
else if (v < min) v = min;
return v;
},
rotateIntoSpaceOf: function (a, m)
{
var dx = -a.x,
dy = -a.y;
this.x = dx * m.cos + dy * m.sin;
this.y = dx * -m.sin + dy * m.cos;
return this;
},
// SIMD Array vectors
array: function (n, values)
{
var array = new Array(n);
array.min = new Vector();
array.max = new Vector();
for (var i = 0; i < n; i++)
{
array[i] = new Vector(
values ? values[i * 2 + 0] : 0.0,
values ? values[i * 2 + 1] : 0.0
);
}
array.transform = function (v, m)
{
for (var i = 0, len = this.length; i < len; i++)
{
var vi = v[i],
elem = this[i];
var x = m.cos * vi.x - m.sin * vi.y + m.pos.x;
var y = m.sin * vi.x + m.cos * vi.y + m.pos.y;
if (x < this.min.x) this.min.x = x;
if (y < this.min.y) this.min.y = y;
if (x > this.max.x) this.max.x = x;
if (y > this.max.y) this.max.y = y;
elem.x = x;
elem.y = y;
}
return this;
}
array.rotate = function (v, m)
{
for (var i = 0, len = this.length; i < len; i++)
{
var vi = v[i],
elem = this[i];
elem.x = m.cos * vi.x - m.sin * vi.y;
elem.y = m.sin * vi.x + m.cos * vi.y;
}
return this;
}
array.resetMinmax = function ()
{
this.min.x = 100000.0;
this.min.y = 100000.0;
this.max.x = -100000.0;
this.max.y = -100000.0;
}
array.normal = function (points)
{
for (var i = 0; i < this.length; i++)
{
this[i].normal(
points[(i + 1) % this.length],
points[i]
);
}
return this;
}
return array;
}
}
/* ==== Matrix container ==== */
function Matrix()
{
this.cos = 0.0;
this.sin = 0.0;
this.pos = new Vector();
this.ang = 0.0;
}
Matrix.prototype = {
set: function (a, x, y, w, h)
{
this.cos = Math.cos(a);
this.sin = Math.sin(a);
this.ang = a;
this.pos.x = x;
this.pos.y = y;
this.w = w;
this.h = h;
return this;
},
copy: function (matrix)
{
this.cos = matrix.cos;
this.sin = matrix.sin;
this.ang = matrix.ang;
this.pos.x = matrix.pos.x;
this.pos.y = matrix.pos.y;
return this;
},
integrate: function (va, vx, vy, kTimeStep)
{
this.pos.x += vx * kTimeStep;
this.pos.y += vy * kTimeStep;
this.ang += va * kTimeStep;
this.cos = Math.cos(this.ang);
this.sin = Math.sin(this.ang);
return this;
}
}
/* ==== PHY2D continuous collision engine ==== */
var PHY2D = function (ctx, pointer, Vector, Matrix)
{
var kGravity = 5;
var kTimeStep = 1 / 60;
var kFriction = 0.5;
var objects = [];
var drag = false;
var v0 = new Vector();
var v1 = new Vector();
var v2 = new Vector();
var v3 = new Vector();
var v4 = new Vector();
var v5 = new Vector();
// contacts list
var contacts = [];
contacts.index = 0;
contacts.create = function (A, B, pa, pb, nx, ny)
{
if (!this[this.index]) this[this.index] = new Contact();
this[this.index++].set(A, B, pa, pb, nx, ny);
}
// AABB container
function AABB()
{
this.x = 0.0;
this.y = 0.0;
this.w = 0.0;
this.h = 0.0;
}
// Polygon constructor
function Polygon(x, y, w, h, vertices, invMass, angle, img)
{
this.img = img;
this.vel = new Vector();
this.angularVel = 0.0;
this.invMass = invMass;
this.matrix = new Matrix().set(angle, x, y, w, h);
this.aabb = new AABB();
this.drag = false;
this.static = false;
this.length = (vertices.length / 2) | 0;
this.localSpacePoints = new Vector().array(this.length, vertices);
this.localSpaceNormals = new Vector().array(this.length).normal(this.localSpacePoints);
this.worldSpaceNormals = new Vector().array(this.length);
this.worldSpacePoints = new Vector().array(this.length);
this.invI = (invMass > 0) ? 1 / ((1 / invMass) * (w * w + h * h) / 3) : 0
this.c1 = new Vector();
this.c0 = new Vector();
objects.push(this);
}
Polygon.prototype = {
// calculate aabb & transform world space points
motionAABB: function ()
{
this.worldSpacePoints.resetMinmax();
this.worldSpacePoints.transform(this.localSpacePoints, this.matrix);
this.worldSpaceNormals.rotate(this.localSpaceNormals, this.matrix);
var min = this.worldSpacePoints.min;
var max = this.worldSpacePoints.max;
this.aabb.x = (min.x + max.x) * 0.5;
this.aabb.y = (min.y + max.y) * 0.5;
this.aabb.w = (max.x - min.x) * 0.5;
this.aabb.h = (max.y - min.y) * 0.5;
},
// Poly vs poly collision detection (Minkowski Difference)
contact: function (that)
{
var face, vertex, vertexRect, faceRect, fp, va, vb, vc, nx, ny, wsN, wdV0, wdV1, wsV0, wsV1;
mostSeparated.set(100000, -1, -1, 0, 100000);
mostPenetrating.set(-100000, -1, -1, 0, 100000);
this.featurePairJudgement(that, 2);
that.featurePairJudgement(this, 1);
if (mostSeparated.dist > 0 && mostSeparated.fpc !== 0)
{
face = mostSeparated.edge;
vertex = mostSeparated.closestI;
fp = mostSeparated.fpc;
}
else if (mostPenetrating.dist <= 0)
{
face = mostPenetrating.edge;
vertex = mostPenetrating.closestI;
fp = mostPenetrating.fpc;
}
if (fp === 1) vertexRect = this, faceRect = that;
else vertexRect = that, faceRect = this;
wsN = faceRect.worldSpaceNormals[face];
va = vertexRect.worldSpacePoints[(vertex - 1 + vertexRect.length) % vertexRect.length];
vb = vertexRect.worldSpacePoints[vertex];
vc = vertexRect.worldSpacePoints[(vertex + 1) % vertexRect.length];
if (v0.project(vb, va, wsN) < v1.project(vc, vb, wsN))
{
wdV0 = va;
wdV1 = vb;
}
else
{
wdV0 = vb;
wdV1 = vc;
}
wsV0 = faceRect.worldSpacePoints[face];
wsV1 = faceRect.worldSpacePoints[(face + 1) % faceRect.length];
if (fp === 1)
{
this.projectPointOntoEdge(wsV0, wsV1, wdV0, wdV1);
that.projectPointOntoEdge(wdV1, wdV0, wsV0, wsV1);
nx = -wsN.x;
ny = -wsN.y;
}
else
{
this.projectPointOntoEdge(wdV1, wdV0, wsV0, wsV1);
that.projectPointOntoEdge(wsV0, wsV1, wdV0, wdV1);
nx = wsN.x;
ny = wsN.y;
}
contacts.create(this, that, this.c0, that.c0, nx, ny);
contacts.create(this, that, this.c1, that.c1, nx, ny);
},
featurePairJudgement: function (that, fpc)
{
var wsN, closestI, closest, dist;
for (var edge = 0; edge < this.length; edge++)
{
wsN = this.worldSpaceNormals[edge];
v5.rotateIntoSpaceOf(wsN, that.matrix);
var closestI = -1,
closestD = -100000;
for (var i = 0; i < that.length; i++)
{
var d = v5.dot(that.localSpacePoints[i]);
if (d > closestD)
{
closestD = d;
closestI = i;
}
}
var closest = that.worldSpacePoints[closestI];
v0.sub(closest, this.worldSpacePoints[edge]);
var dist = v0.dot(wsN);
if (dist > 0)
{
v1.sub(closest, this.worldSpacePoints[(edge + 1) % this.length]);
dist = this.projectPointOntoEdgeZero(v0, v1).lenSqr();
if (dist < mostSeparated.dist)
{
mostSeparated.set(dist, closestI, edge, fpc);
}
}
else
{
if (dist > mostPenetrating.dist)
{
mostPenetrating.set(dist, closestI, edge, fpc);
}
}
}
},
projectPointOntoEdge: function (p0, p1, e0, e1)
{
var l = v2.sub(e1, e0).lenSqr() + 0.0000001;
this.c0.addScale(e0, v2, v3.clamp(v3.sub(p0, e0).dot(v2) / l, 0, 1));
this.c1.addScale(e0, v2, v3.clamp(v3.sub(p1, e0).dot(v2) / l, 0, 1));
},
projectPointOntoEdgeZero: function (e0, e1)
{
var l = v2.sub(e1, e0).lenSqr() + 0.0000001;
return this.c0.addScale(e0, v2, v3.clamp(v3.inv(e0).dot(v2) / l, 0, 1));
},
// integrate
integrate: function ()
{
if (this.drag)
{
this.vel.x += (pointer.pos.x - this.matrix.pos.x);
this.vel.y += (pointer.pos.y - this.matrix.pos.y);
}
else
{
if (this.invMass > 0) this.vel.y += kGravity;
}
this.matrix.integrate(this.angularVel, this.vel.x, this.vel.y, kTimeStep);
if (!this.static) this.motionAABB();
else
{
if (this.invMass === 0)
{
this.static = true;
this.motionAABB();
}
}
},
// draw image
draw: function ()
{
if (this.img)
{
var m = this.matrix;
ctx.save();
ctx.translate(m.pos.x, m.pos.y);
ctx.rotate(m.ang);
ctx.drawImage(this.img, -m.w * 0.5, -m.h * 0.5, m.w, m.h);
ctx.restore();
if (pointer.active)
{
if (!drag && this.invMass)
{
ctx.beginPath();
for (var j = 0; j < this.length; j++)
{
var a = this.worldSpacePoints[j];
ctx.lineTo(a.x, a.y);
}
ctx.closePath();
if (ctx.isPointInPath(pointer.pos.x, pointer.pos.y))
{
this.drag = true;
drag = true;
}
}
}
else
{
if (drag)
{
for (var i = 0; i < objects.length; i++) objects[i].drag = false;
drag = false;
}
}
}
}
}
// Feature pair container
function FeaturePair()
{
this.dist = 0;
this.closestI = 0;
this.edge = 0;
this.fpc = 0;
}
FeaturePair.prototype.set = function (dist, closestI, edge, fpc)
{
this.dist = dist;
this.closestI = closestI;
this.edge = edge;
this.fpc = fpc;
}
var mostSeparated = new FeaturePair();
var mostPenetrating = new FeaturePair();
// Contacts Constructor
function Contact()
{
this.a = null;
this.b = null;
this.normal = new Vector();
this.normalPerp = new Vector();
this.ra = new Vector();
this.rb = new Vector();
this.dist = 0;
this.impulseN = 0;
this.impulseT = 0;
this.invDenom = 0;
this.invDenomTan = 0;
}
Contact.prototype = {
// set new contact
set: function (A, B, pa, pb, nx, ny)
{
var ran, rbn;
this.a = A;
this.b = B;
this.normal.set(nx, ny);
this.normalPerp.set(-ny, nx);
this.dist = v1.sub(pb, pa).dot(this.normal);
this.impulseN = 0;
this.impulseT = 0;
this.ra.sub(pa, A.matrix.pos).perp();
this.rb.sub(pb, B.matrix.pos).perp();
ran = this.ra.dot(this.normal);
rbn = this.rb.dot(this.normal);
this.invDenom = 1 / (A.invMass + B.invMass + (ran * ran * A.invI) + (rbn * rbn * B.invI));
ran = this.ra.dot(this.normalPerp);
rbn = this.rb.dot(this.normalPerp);
this.invDenomTan = 1 / (A.invMass + B.invMass + (ran * ran * A.invI) + (rbn * rbn * B.invI));
},
applyImpulse: function (imp)
{
// linear
this.a.vel.addScale(this.a.vel, imp, this.a.invMass);
this.b.vel.subScale(this.b.vel, imp, this.b.invMass);
// angular
this.a.angularVel += imp.dot(this.ra) * this.a.invI;
this.b.angularVel -= imp.dot(this.rb) * this.b.invI;
},
// solve contacts
solve: function ()
{
var newImpulse, absMag, dv = v1;
// relative velocities
dv.sub(
v2.addScale(this.b.vel, this.rb, this.b.angularVel),
v3.addScale(this.a.vel, this.ra, this.a.angularVel)
);
// new impulse
newImpulse = (dv.dot(this.normal) + this.dist / kTimeStep) * this.invDenom + this.impulseN;
if (newImpulse > 0) newImpulse = 0;
this.applyImpulse(v2.scale(this.normal, newImpulse - this.impulseN));
this.impulseN = newImpulse;
// friction impulse
absMag = Math.abs(this.impulseN) * kFriction;
newImpulse = v2.clamp(dv.dot(this.normalPerp) * this.invDenomTan + this.impulseT, -absMag, absMag);
this.applyImpulse(v3.scale(this.normalPerp, newImpulse - this.impulseT));
this.impulseT = newImpulse;
}
}
function render()
{
// aabb broadphase
contacts.index = 0;
for (var i = 0, len = objects.length; i < len - 1; i++)
{
var A = objects[i];
for (var j = i + 1; j < len; j++)
{
var B = objects[j];
if (A.invMass || B.invMass)
{
var a = A.aabb,
b = B.aabb;
if (
Math.abs(b.x - a.x) - (a.w + b.w) < 0 &&
Math.abs(b.y - a.y) - (a.h + b.h) < 0
) A.contact(B);
}
}
}
// solver
var len = contacts.index;
for (var j = 0; j < 5; j++)
{
for (var i = 0; i < len; i++)
{
contacts[i].solve();
}
}
// integration
for (var i = 0, len = objects.length; i < len; i++)
{
objects[i].integrate();
}
// draw polygons
for (var i = 0; i < len; i++)
{
var rb = objects[i];
rb.draw();
}
}
// public interface
return {
render: render,
// create new rectangle
rectangle: function (x, y, w, h, mass, angle, img)
{
var vertices = [
w / 2, -h / 2, -w / 2, -h / 2, -w / 2, h / 2,
w / 2, h / 2
];
var invMass = mass ? 1 / mass : 0;
return new Polygon(x, y, w, h, vertices, invMass, angle, img);
},
// delete static objects
deleteStatic: function ()
{
var k = objects.length;
while (k--)
{
var p = objects[k];
if (!p.invMass) objects.splice(k, 1);
}
},
// draw numbers
number: function (w, h, text)
{
var img = document.createElement("canvas");
var context = img.getContext("2d");
img.width = w;
img.height = h;
context.font = "bold " + (w * 0.92) + "px arial";
context.fillStyle = hsl;
context.fillText(text, 0, h * 0.97);
return img;
},
// delete objects
delete: function (object)
{
for (var i = 0, len = objects.length; i < len; i++)
{
if (objects[i] === object)
{
objects.splice(i, 1);
return;
}
}
}
}
}(ctx, pointer, Vector, Matrix);
/* ==== clock logic ==== */
screen.resize();
function n(n)
{
return n > 9 ? "" + n : "0" + n;
}
var hb = "",
mb = "",
hsl = "",
hue = 0,
lum = 0,
xp = 0;
var hour, minut, seconds = [];
function addNumber(w, x, t, m, a)
{
var h = (w * 0.69) | 0;
var img = PHY2D.number(w, h, t);
return PHY2D.rectangle(x, -w, w, h, m, a, img);
}
function toc()
{
// what time is it ?
var t = new Date(),
hr = n(t.getHours()),
mn = n(t.getMinutes()),
sc = n(t.getSeconds()),
w, h, img, sec;
// hour
if (hr != hb)
{
hue = (Math.random() * 360) | 0;
hsl = "hsl(" + hue + ", 70%, 80%)";
w = (screen.width / 3) | 0;
PHY2D.delete(hour);
hour = addNumber(w, w * 1.2, hr, 1, 0);
hb = hr;
}
// minute
if (mn != mb)
{
// new color hue
hue = (Math.random() * 360) | 0;
hsl = "hsl(" + hue + ", 70%, 60%)";
// change hour color
w = (screen.width / 3) | 0;
h = (w * 0.69) | 0;
img = PHY2D.number(w, h, hr);
hour.img = img;
// delete old minute and create new one
w = (screen.width / 5) | 0;
PHY2D.delete(minut);
minut = addNumber(w, screen.width - w * 1.2, mn, 1, 0);
mb = mn;
// delete old seconds
for (var i = 0; i < seconds.length; i++)
{
setTimeout(function ()
{
PHY2D.delete(seconds.shift());
}, i * 60)
}
xp = 0;
}
// seconds
hsl = "hsl(" + hue + ",70%," + ((20 + Math.random() * 80) | 0) + "%)";
w = (screen.width / 15) | 0;
sec = addNumber(w, w + (xp * w) % (screen.width - (w * 2)), sc, 0.1, Math.random() * 2 * Math.PI);
seconds.push(sec);
xp++;
}
toc();
setInterval(toc, 1000);
/* ==== main loop ==== */
function run()
{
requestAnimationFrame(run);
ctx.clearRect(0, 0, screen.width, screen.height);
PHY2D.render();
}
requestAnimationFrame(run);
}();
Also see: Tab Triggers